赞
踩
HDFS是Hadoop中的一个分布式文件系统,其主要作用是用于存储和管理大规模数据集。
作用包括:
HDFS是Hadoop分布式文件系统(Hadoop Distributed File System)的简称。它是一个可扩展的分布式文件系统,设计用于存储和处理大规模数据集的应用程序。
优点:
缺点:
使用场景:
在Hadoop中,NameNode和DataNode是HDFS的关键组件。它们分别完成以下功能:
-NameNode:NameNode是主要控制节点。它维护整个文件系统的元数据信息,包括文件结构、权限以及每个文件块存储在哪个DataNodes上等。客户端通过与NameNode进行交互来执行诸如读取、写入或删除文件等操作。
-DataNode:DataNode是实际存储数据的节点。它负责管理自身上分配给其它节点的磁盘空间,并按照指令将块(block)写入磁盘或返回给客户端请求读取特定块时提供该块。此外,DataNodes还会向NameNode汇报各自所拥有和管理的数据块信息
在HDFS架构中,NameNode负责管理文件系统元数据信息,并保存在内存中。而DataNode则负责保存具有文件快的数据。它们之间通过以下方式进行通信。
HDFS NameNode的高可用实现主要通过以下两种方式:
为了实现HDFS NameNode的高可用性,需要以下角色:
DataNode是Hadoop分布式文件系统(HDFS)中的一个组件,负责存储实际的数据块。下面是DataNode存储数据的过程:
HDFS的容错机制主要包括以下几个方面:
HDFS的副本机制是指在Hadoop分布式文件系统中,数据会被分为多个块,并且每个块都会有多个副本存储在不同的数据节点上。
HDFS的副本机制有以下几个特点:
HDFS通过以下机制来保证数据不丢失:
HDFS是Apache Hadoop生态系统的一部分,用于存储大规模数据的分布式文件系统。HDFS的读写流程包括以下步骤:
HDFS写入流程:
客户端请求:当一个应用程序需要将数据存储到HDFS中,首先由客户端发送写请求。
数据划分:要写入的数据被划分成一系列数据块(通常是128MB或256MB)。这些数据块会被分布式存储在HDFS集群的不同节点上。
选择DataNode:HDFS的NameNode被用于维护文件系统的元数据信息,它记录了每个数据块存储在哪个DataNode上。客户端会向NameNode发送数据块的位置请求,以确定要写入的DataNode。
客户端写入:客户端将数据块写入选定的DataNode。
数据复制:数据复制是HDFS的一个关键特性,通常每个数据块都会复制到多个不同的DataNode上,以防数据丢失。
数据流水线:数据的写入是通过数据流水线(pipeline)进行的,以提高写入速度。在流水线上的DataNodes之间数据以块的形式传输,而不是整个文件。
确认写入:当所有数据块都写入成功并复制到足够的DataNode时,客户端会收到写入成功的确认。
HDFS读取流程:
客户端请求:当一个应用程序需要读取HDFS中的文件时,客户端向HDFS的NameNode发送读取请求。
元数据查询:NameNode负责维护文件系统的元数据,它会返回文件的位置信息,包括哪些DataNodes上存储了数据块。
DataNode读取:客户端开始从最近的DataNode读取数据块。如果某个DataNode不可用,客户端会尝试从副本中的其它DataNode读取数据。
数据传输:数据会通过网络传输到客户端,通常以块的形式传输,而不是整个文件。
数据组装:客户端将从不同DataNodes读取的数据块组装成完整的文件。
需要注意的是,HDFS是为大规模数据存储和分析设计的,因此在读写时会有一些额外的优化的容错机制,以确保数据的高可用性和可靠性。此外,HDFS还支持数据压缩和数据复制策略的配置,以满足不同应用场景的需求。流程中的一些具体细节可能会因Hadoop版本和配置而有所不同。
输入分片是将大文件切割成适合并行处理的小块数据,每个小块数据叫做一个输入分片。作为MapReduce任务的基本单元,输入分片使得多个计算节点可以同时处理不同的输入数据,并发执行任务。这样可以提高整体任务的执行效率和并发度。
Hadoop的默认块大小是128MB。这个设置是经过仔细考虑的。
首先,大块大小可以减少寻址开销。在处理大型数据集时,如果块太小,会导致较多的寻址操作,增加了磁盘寻道时间,降低了整体的性能。通过增大块大小,可以减少寻址次数,提高数据的读写速度。
其次,大块大小可以提高数据的本地性。Hadoop是为了处理大规模数据而设计的,通常在集群中的不同节点上存储数据。当任务需要读取数据时,如果数据块大小较大,这些数据块有很大的概率可以在本地节点上找到,减少了网络传输的需求,提高了整体的效率。
最后,大块大小可以提高处理小文件的效率。在Hadoop中,每个文件都被拆分成多个块进行处理,如果块太小,会导致小文件的数量增加,从而增加了管理和调度的开销。通过增大块大小,可以减少小文件的数量,简化了整个系统的管理和调度过程。
HDFS是Apache Hadoop中的分布式文件系统,用于存储和管理大规模数据集。HDFS将文件分割成固定大小的块(Block)并将其分散存储在集群中的不同节点上。
HDFS的块是默认大小为128MB的连续字节序列。块的大小是固定的,不会根据文件大小而变化。这种固定大小的块有助于提高数据处理的效率。
HDFS的块是文件的基本存储单元。当一个文件被存储在HDFS中时,它会被分割成一系列的块,并且每个块都会被复制到集群中的多个节点上以实现数据的冗余和容错性。
HDFS的块存储在数据节点(DataNode)上。数据节点是集群中存储实际数据的节点。每个数据节点可以存储一个或多个块,并负责管理块的复制和传输。
HDFS的块复制策略确保了数据的可靠性和容错性。每个块默认会被复制到集群中的三个不同的数据节点上,这样即使某个节点发生故障,数据仍然可以从其它节点中获取。
HDFS的块默认大小是128M。在Hadoop 2.3版本中,将HDFS的块默认大小从64M更改为128M。
要修改HDFS的默认块大小,可以按照以下步骤进行操作:
在导入大文件到HDFS时,可以通过自定义分片来更好地管理和利用存储空间。以下是几种常见的自定义分片方法:
Hadoop2.x的HDFS快照是一种用于创建文件系统快照的功能。它允许在不影响正在运行的作业和任务的情况下,对文件系统的特点时间点进行拍摄和恢复。
快照是目录或文件系统的只读副本。当创建快照时,系统会记录文件的当前状态,并创建一个指向该状态的只读指针。这意味着快照可以提供文件系统在特定时间点的视图,以便进行数据分析、备份和恢复等操作。
以下是一些Hadoop2.x的HDFS快照的重要事实和功能:
要在表中查询到直接上传到HDFS表目录中的数据,可以按照以下步骤进行操作:
CREATE EXTERNAL TABLE table_name (
column1 datatype1,
column2 datatype2,
...
)
LOCATION '/user/hive/warehouse/table_name';
在上述语句中,'table_name’表示表的名称,‘column1’,'column2’表示表的列名和对应的数据类型,'LOCATION’指定了表的数据存储位置为HDFS表目录。
4. 完成表的创建后,可以使用Hive的查询语句进行数据查询,例如:
SELECT * FROM table_name;
上述语句将查询并返回表中的所有数据。
Hadoop中的数据存储是通过将大文件划分为固定大小的块(Block)来进行管理的。这样做的主要原因有以下几点:
Hadoop小文件处理问题是指在Hadoop集群中处理大量小文件时可能遇到的性能和效率问题。这些小文件的特点是文件体积较小,可能只有几KB或几MB,但数量庞大,可能达到百万级别。
处理小文件可能会导致以下问题:
为了解决Hadoop小文件处理问题,可以考虑以下方法:
HDFS的常见数据格式包括文本文件、序列文件、Avro文件、Parquet文件、ORC文件等。
列式存储格式和行存储格式的主要区别在于数据的组织方式。在行存储格式中,数据按行存储,即一行的所有字段值都连续存储;而在列式存储格式中,数据按列存储,即同一列的所有值连续存储。
列式存储格式相较于行存储格式具有以下优点:
HDFS是Hadoop生态系统中的一部分,是一种高容错、高可靠性、分布式文件系统。数据以块的形式进行存储,在集群中分布在多个节点上。HDFS适合用于大规模数据处理,具有高吞吐量和扩展性,并且支持并行读写操作。
HBase是一个构建在Hadoop上的面向列的NoSQL分布式数据块。它提供了快速随机访问大型数据集的能力,并具有强大的横向扩展能力。HBase适合用于需要实时访问和查询海量结构化数据的场景,例如提供实时分析和查询。
在Hadoop中,fsimage和edit是两个关键的组件,用于存储和管理文件系统的元数据。
区别:
-fsimage是一个静态的文件,用于存储文件系统的整体状态,而edit是一个动态的文件,用于记录文件系统的变化操作。
-fsimage文件在NameNode启动时加载到内存中,用于响应客户端的元数据请求,而edit文件的操作会被应用到已加载的fsimage文件中,以保持文件系统的最新状态。
-fsimage文件相对较大,而edit文件相对较小,只记录了变化操作的细节。
-fsimage文件的加载和应用较慢,而edit文件的处理速度较快。
总结:fsimage是文件系统的静态状态,而edit是文件系统的动态变化记录。两者共同作用于文件系统元数据的管理和维护。
HDFS的默认副本数是3。这个数量是基于可靠性和容错性的考虑。通过将数据副本分布在不同的节点上,可以提高系统的可用性和数据的冗余性,以防止单个节点故障导致数据丢失。
如果想修改HDFS的副本数,可以通过修改HDFS的配置文件hdfs-site.xml中的参数dfs.replication来实现。可以手动修改该参数的值所需的副本数,并重新启动HDFS集群以使修改生效。需要注意的是,在修改副本数之前,需要考虑集群的硬件资源和容量,以及对数据可靠性和性能的考虑。
Hadoop MapReduce是一种分布式计算模型,被广泛应用于大规模数据处理。其工作原理如下:
在MapReduce模型中,Map阶段负责将输入数据切割成若干独立的数据块,并对每个数据块应用相应的映射函数,将其转换为一系列(key,value)键值对。这些键值对之后根据key进行排序和分区,以便在Reduce阶段进行合并。
Reduce阶段接收到通过Shuffle过程重新组织的(key,value)集合,根据相同的key将所有value进行分组以便处理。Reduce函数会对每个key及其关联的value集合执行计算逻辑,从而生成最终结果。
总而言之,Map阶段实现了任务的划分、映射和排序;而Reduce阶段负责接收Map输出中拍好序并分组后才能执行逻辑计算来得到结果。
MapReduce中的环形缓冲区是为了解决数据传输和处理的效率问题而设计的。它的作用是在Map和Reduce阶段之间传输数据,使得数据可以在不同的节点之间进行流转和处理。
环型缓冲区的存在有以下几个原因:
MapReduce中的Shuffle过程是非常重要的,它负责对Map阶段的输出结果进行排序和重新分区,以便将相同key的值聚集在一起。Shuffle过程有以下几个重要的作用:
在Hadoop集群中,可以使用MapReduce框架来实现数据的排序。具体步骤如下:
数据倾斜指在分布式计算环境下,某个或几个计算节点负责处理的数据量远大于其它计算节点。这导致部分计算节点负载过重、任务执行时间延长。为了解决MapReduce任务中的数据倾斜问题,可以采取以下措施:
-使用Combiner函数来减少网络传输和磁盘IO。
-在一个作业中包含特别慢速运行的任务,将这些任务选择性地合并到一个独立地输出文件中。
-增加reduce容量或增加reducer数量,以便更好地利用资源,并使工作负载均衡。
-使用二次排序技术对key进行排序和分区操作。
MapReduce Map Join可以通过将关联字段相同的记录分发到同一个reduce节点上进行聚合,从而解决数据倾斜的问题。具体来说,MapReduce Map Join的解决方法如下:
Hadoop的Combiner的作用是在Map阶段之后,在数据传输到Reduce阶段之前对Map输出的中间劫夺进行本地合并和压缩,以减少数据的传输量和提高整体的性能。Combiner可以将相同key的多个Map输出结果进行合并,减少了网络传输的数据量,从而减少了Reduce阶段的负载。通过使用Combiner,可以在不影响最终结果的情况下,提高整个作业的执行效率。
在MapReduce任务中,Map阶段将输入数据分割为多个分区,并为每个分区分配一个MapTask来处理。而Reduce阶段将Map输出的结果按照键进行排序,并将具有相同键的记录发送给同一个ReduceTask进行处理。因此,ReduceTask的数量可以是多于或等于分区数量的,但不会少于分区数量。这是因为每个ReduceTask可以处理多个分区的输出结果,也可以处理一个分区的输出结果。通常,ReduceTask的数量是根据需求来进行调整的,以获得更好的性能和负载均衡。
从Mapper端到Reduce端的数据量在应用Combiner之后会减少。Combiner是在Mapper阶段对输出的键值对进行合并和压缩,减少了传输到Reduce阶段的数据量。这是因为Combiner会将相同的键的值进行局部聚合,减少了传输的数据量。因此,使用Combiner可以减少网络传输和磁盘IO的开销,提高整体的性能。
MapReduce mapjoin是一种处理大数据集的技术,它将两个或多个数据集连接在一起,以便在MapReduce作业中进行处理。
实现原理如下:
应用场景:
MapReduce的reduce join通过Map阶段将具有相同键的数据进行标记,然后通过Shuffle阶段将具有相同键的数据发送到同一个Reduce任务中,最后在Reduce阶段将具有相同键的数据进行连接操作,生成最终的结果。这样可以有效地处理大数据集合,实现数据地聚合和关联操作。
Reduce在知道去哪里拉Map结果集之前,需要先了解MapReduce的过程。
在MapReduce过程中,Map任务会将输入数据分割成若干个独立的片段,并为每个片段创建一个Map任务进行处理。每个Map任务会将其处理结果分成若干个键值对,并将这些键值对按照键的哈希值进行分区。
Reduce任务的数量可以通过配置来指定。当Map任务处理完毕后,Reduce任务会按照预先定义的分区规则,将所有具有相同键的键值对发送到同一个Reduce任务进行处理。这个过程通常称为分区操作。
因此,Reduce任务知道去哪里拉Map结果集是通过分区操作来实现的。每个Reduce任务会收集到属于自己的分区中的键值对,然后对这些键值对进行处理,最终生成最终的结果。所以,Reduce任务知道去哪里拉Map结果集是通过分区规则和数据的键确定的。
MapReduce Shuffle是在MapReduce计算模型中的一个重要步骤,用于在Map阶段和Reduce阶段之间进行数据传输和整理。在Shuffle过程中,Map任务的输出数据被分区、排序和分组,然后传输给Reduce任务进行处理。
排序算法在Shuffle过程中的作用是对Map任务的输出键值对进行排序,以便Reduce任务能够按照特定的顺序接收和处理数据。排序算法的选择对Shuffle的性能和效率有重要影响。
在MapReduce中,Shuffle的排序算法通常采用基于排序的合并(Sort-Based Merge)算法。具体来说,Map任务会将输出键值对按照键进行排序,然后将排序后的数据划分成多个分区,并将每个分区的数据传输给对应的Reduce任务。对于每个分区,Reduce任务会将接收到的数据进行合并排序,以确保相同的键值对连续出现。
常见的排序算法包括快速排序、归并排序和堆排序。在MapReduce中,快速排序通常被用作排序算法,因为它具有较好的平均时间复杂度和空间复杂度。
MapReduce shuffle需要排序的原因是为了保证Reducer能够按照键的顺序进行合并和处理。在Map阶段,每个Mapper会将输出的键值对按照键进行分区,并发送给对应的Reducer。在Reducer端,为了合并同一键的所有值,需要对这些键值对进行排序,以便将相同键的值聚合在一起。这样可以确保Reducer能够按照键的顺序进行处理,从而得到正确的结果。排序也有助于减少Reducer端的内存占用和磁盘IO,提高整体的性能。
Hadoop序列化和反序列化是指将数据从内存中转换为字节流的过程,并在需要时将字节流重新转换为原始数据类型。这是Hadoop生态系统中处理大数据的关键技术之一。
Hadoop序列化是将数据对象转换为字节流的过程。在Hadoop中,数据对象通常是以Java对象的形式存在的,但是在网络传输或磁盘存储时,需要将这些对象转换为字节流。序列化的目的是将数据压缩成字节流的形式,以便在网络传输或磁盘存储中占用更少的空间。Hadoop提供了多种序列化机制,如Java默认的Serialzable接口、Avro、Thrift和Protocol Buffers等。
Hadoop反序列化是将字节流转换回原始数据类型的过程。在接收到字节流后,需要将其还原为原始数据对象。反序列化的过程是序列化的逆向过程,它将字节流转换为Java对象或其它原始数据类型。Hadoop提供了相应的反序列化机制来与序列化机制配置使用,以便在数据传输和数据处理过程中与原始数据进行转换。
HDFS是一种用于存储和处理大数据的分布式文件系统,而Mapper和Reducer是Hadoop框架用于分布式计算的关键组件。
Mapper和Reducer的个数可以根据以下因素进行确定:
Reducer的个数依据主要有两个方面:
在MapReduce中,最费时间的阶段往往是Reduce阶段。这是因为在Map阶段中,数据被划分并分发给各个Map任务进行处理,这些任务可以并行执行。而在Reduce阶段中,所有的Map任务的输出结果需要通过网络传输到Reduce任务进行合并和计算。这个过程可能涉及大量的数据传输和磁盘读写操作,因此需要较长的时间来完成。此外,Reduce阶段中还需要进行排序和归并操作,进一步增加了时间消耗。因此,Reduce阶段通常是整个MapReduce过程中最费时间的阶段。
为了提高MapReduce的吞吐量,我们可以选择适当的垃圾回收器。在选择垃圾回收器时,可以考虑以下几点:
在MapReduce作业执行的过程中,中间的数据会存在本地磁盘上,而不是存储在内存中。这是因为MapReduce框架通常处理大规模的数据集,无法完全存储在内存中。中间数据存储在本地磁盘上可以确保数据的持久化和可靠性,并允许处理大量的数据。当然,一些优化技术也可以用于减少中间数据的存储量,如压缩、合并等。
MapReduce map输出的数据会先缓存到内存中,当达到一定阈值时,会通过Partitioner将数据分区后写入磁盘。这些分区文件会存储在本地磁盘上。接着,这些分区文件会被复制到HDFS中,以便后续的reduce阶段可以从HDFS中读取并进行处理。所以,MapReduce map输出的数据最终会落地到磁盘和HDFS中。
MapReduce中默认的分区机制是根据Key的哈希值进行分区。具体来说,Map阶段输出的每个键值对都会根据键的哈希值被分配到不同的分区中,同一个键的所有值都会被发送到同一个分区中。这样可以保证相同的键值对在Reduce阶段被正确的聚合处理。
OOM(Out of Memory)在MapReduce运行过程中可能发生在以下位置:
缺点:
为了解决以上问题,可以使用Spark来替换传统的MapReduce:
4. Spark提供了高级API和丰富的转换操作,减少了复杂度并加速开发和调试过程。
5. Spark通过将数据保留到内存中来最小化磁盘读写,并使用强大的优化技术提高性能。
6. 由于Spark基于RDD模型,并支持流式处理、图计算等功能,在不同类型任务上更加灵活和适用。
在MapReduce中,分区是指将输出键值对根据某种规则进行划分,将相同规则的键值对分配给同一个Reducer。分区的作用是将数据分散到不同的Reducer上进行处理,从而实现并行处理和负载均衡。
作用:
Map的分片大小取决于多个因素,包括所用的分布式文件系统、集群的配置和硬件资源。
一般来说,Hadoop的Map的默认分片大小是64MB。这是因为Hadoop将输入数据切分固定大小的块进行处理,每个块作为Map的输入。这个大小可以通过’mapreduce.input.fileinputformat.split.maxsize’属性进行配置。
然而,实际的分片大小可能会受到其它因素的影响。例如,如果输入文件小于64MB,那么分片大小将等于文件大小。另外,Hadoop还会考虑数据块的位置信息,尽量将Map任务分配到离数据块所在位置最近的节点上,以减少数据传输的开销。
总的来说,Map的分片大小是根据多个因素综合考虑的,包括文件大小、集群配置、硬件资源和数据位置等。
MapReduce在实现过程中使用了两次排序。
第一次排序是在Map阶段,它的目的是将输入数据划分为多个分区,并按照分区和键值进行排序,以便将具有相同键的数据发送到同一个Reducer中进行处理。
第二次排序是在Reduce阶段,它的目的是对来自不同Mapper的输出进行全局排序,以确保最终输出的结果按照键值有序。这个全局排序是在Reducer中进行的。
在MapReduce中处理一个大文件的步骤如下:
YARN是Apache Hadoop生态系统中的一个集群资源管理器。它的主要目的是管理和分配集群中的资源,并为运行在Hadoop集群上的应用程序提供资源。
YARN的架构基于两个主要组件:ResourceManager(资源管理器)和NodeManager(节点管理器)。
YARN的工作流程如下:
YARN有三个主要的模块:
YARN的工作机制是通过ResourceManager和NodeManager的配合,实现集群资源的管理、分配和调度,以及应用程序的执行和监控。ApplicationMaster在每个应用程序中起到协调和管理的作用,而容器则是任务执行的基本单位。
YARN是Hadoop生态系统中的一个资源管理器,负责管理和分配集群中的资源。YARN的高可用性指的是在出现故障或节点失效时,YARN能够自动切换到备用节点,保证集群的稳定运行。
在YARN中,Container是由NodeManager启动的。当ResourceManager接收到一个应用程序的提交请求后,它会为该应用程序分配一个ApplicationMaster。然后,ApplicationMaster会向ResourceManager请求资源,并且ResourceManager会为其分配一个或多个Container。
一旦ResourceManager分配了Container,NodeManager会根据ResourceManager提供的资源和配置信息启动Container。NodeManager会在一个可用的节点上创建一个进程来运行Container,并且在Container中启动应用程序的执行环境。这个执行环境可能是一个Java虚拟机(JVM)或者其它编程语言的运行时环境,取决于应用程序的要求。
Container启动后,ApplicationMaster将与其进行通信,并在Container中运行应用程序的任务。任务的执行将在Container中进行,知道任务完成或者遇到错误。
任务倾斜是指某一个或少数几个任务执行时间明显长于其它同类任务。为了解决这个问题,可以采用以下策略:
Hadoop的高可用性是通过Hadoop集群中的主节点和从节点之间的备份和自动故障恢复机制来实现的。
首先,Hadoop集群中有两个类型的节点:主节点(NameNode和JobTracker)和从节点(DataNode和TastTracker)。主节点负责管理整个集群的元数据和任务调度,从节点则负责存储数据和执行任务。
Hadoop的高可用性主要围绕主节点的故障恢复展开。当主节点失败时,系统会自动将备份节点(Secondary NameNode和Standby NameNode)的元数据恢复到新的主节点上,并将新的主节点提升为活跃状态。这个过程称为故障求换。备份节点会定期与主节点进行通信,以保持数据同步。
为了确保高可用性,Hadoop还使用了数据复制机制来保护数据。在Hadoop中,默认情况下,每个数据块会被复制到多个从节点上,这些从节点通常位于不同的机架上。当一个从节点失败时,系统会自动从其它副本中选择一个可用的副本来进行读取操作,保证数据的可靠性和可用性。
此外,Hadoop还使用了心跳机制来检测节点的状态,每个节点都会定期向主节点发送心跳信号,以表明自己的存活状态。如果主节点在一定时间内没有收到来自某个节点的心跳信号,系统会认为该节点已经故障,并触发相应的恢复流程。
总的来说,Hadoop的高可用性通过备份和自动故障恢复机制、数据复制和心跳机制等多种手段来保证集群的稳定运行和数据的可靠性。
Hadoop3.x相对于Hadoop2.x在YARN方面有以下改进之处:
Hadoop是一个开源的分布式计算框架,用于处理大规模数据集的存储和处理。它由Apache基金会开发和维护,为处理大数据提供了可靠和高效的解决方案。
Hadoop的核心组件:
特点:
4. 可扩展性:Hadoop可以在集群中添加更多的节点,以适应不断增长的数据量和计算需求。
5. 容错性:Hadoop具有自动备份和数据冗余机制,确保数据的可靠性和容错性。
6. 高性能:Hadoop可以并行处理大规模数据集,提高高性能的数据处理能力。
Hadoop的checkpoint流程是指在Hadoop集群中,将正在运行的任务的状态信息和元数据信息保存在持久化存储中,以便在集群发生故障或节点失效时,可以快速地恢复任务的执行状态。
流程如下:
以下是Hadoop生态圈中一些重要组件及其作用:
Hadoop是一个开源的分布式计算框架,用于处理大规模数据集的分布式存储和计算。下面是Hadoop 1.x,2.x和3.x的区别:
Hadoop 1.x:
-基于MapReduce计算资源
-采用Hadoop分布式文件系统(HDFS)作为数据存储系统。
-使用JobTracker和TaskTracker来管理作业和任务的执行。
-不支持容器化(Containerization)和动态资源管理。
-不支持快速故障恢复和高可用性。
Hadoop 2.x
-引入了YARN资源管理器,取代了JobTracker和TaskTracker。
-YARN支持多种计算模型,如MapReduce、Spark、Hive等。
-引入了容器化技术,将计算任务封装在容器中,提供了更好的资源隔离和管理。
-支持动态资源管理,可以根据应用程序的需求进行资源分配。
-支持高可用性,引入了ResourceManager和NodeManager来实现故障恢复和容错。
Hadoop 3.x
-引入了一些新的特性和改进。
-引入了Erasure Coding(纠删码)技术,用于提供更高的存储效率和容错效率。
-引入了多个NameNode,实现了多活的高可用性,提供了更好的性能和可靠性。
-引入了Container Placement Constraint,可以根据特定条件将容器分配到相应的节点上。
-引入了GPU支持,可以利用GPU进行计算加速。
总的来说,Hadoop 1.x是最早的版本,采用了传统的MapReduce计算模型;Hadoop 2.x引入了YARN和容器化技术,提供了更好的资源管理和多计算模型支持;Hadoop 3.x在2.x的基础上引入了更多的特性和改进,提供了更高的可靠性和性能。
Hadoop与Spark都是用于大规模数据处理和存储的开源工具,但有一下区别:
-Hadoop是基于磁盘存储的批量处理系统,而Spark则是内存计算引擎。
-Hadoop在处理大数据集时效率较低,由于需将结果写入磁盘,因而适合于离线批处理。相比之下,Spark可以利用内存中的数据进行迭代和交互式查询,因此更适合实时计算和迭代处理。
-Spark提供了更广泛的API支持(包括Scala、Python和Java),以及丰富的高级功能(如机器学习、图形处理等)。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。