赞
踩
为节省时间,在这里先不自己训练了,就使用预训练权重yolov5n.pt
首先,根据官方文档的要求,在训练完成模型之后,再修改models/yolo.py Detect类下的forward函数
也就是修改为
def forward(self, x):
z = [] # inference output
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
return x
然后,在yolov5目录下,打开终端输入命令
python export.py --weights yolov5n.pt --data data/coco128.yaml --include onnx --opset 12 --batch-size 1
注意注意!opset一定要为12,不然后面onnx转rknn会报错。weights自己选你训练完成的best.pt,data选你自己设置的,我这里只是做一个最简单情况的演示。
这里我遇到一个错误:
line 715, in run
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
AttributeError: ‘list’ object has no attribute ‘shape’
解决方法
找到这一行,修改为
shape = tuple(y[0].shape) # model output shape
程序运行结束后,会在当前文件夹下生成一个yolov5n.onnx文件,待会要用。
进入你的Ubuntu系统,用conda创建一个新的环境
conda create -name rknn python=3.8
激活这个环境
conda activate rknn
将整个rknn_toolkit2源码解压后的文件夹复制进Ubuntu的 /home/用户名
目录下,我将它重命名为rknn。
进入doc目录,使用 pip 安装依赖:
pip install -r requirements-cpu-ubuntu20.04_py38.txt -i https://mirror.baidu.com/pypi/simple
返回上一级目录,然后进入packages目录,安装rknn_toolkit2
pip install rknn_toolkit2-1.4.0_22dcfef4-cp38-cp38-linux_x86_64.whl
完成后,输入命令 python
from rknn.api import RKNN
如图所示,如果没有报错,说明安装成功,使用键盘Ctrl+Z退出此模式。
接下来,把(三、4)步所得到的onnx文件放入rknn/examples/onnx/yolov5文件夹下,终端里进入该文件夹。
用你喜欢的编辑器修改 test.py里面的一些内容,具体位置如图所示
执行
python test.py
成功运行后的内容大概是这样的
此时这个目录下也会生成一个yolov5n.rknn文件,待会要用。
内容如下
import numpy as np import cv2 from rknnlite.api import RKNNLite RKNN_MODEL = 'yolov5n.rknn' QUANTIZE_ON = True OBJ_THRESH = 0.25 NMS_THRESH = 0.45 IMG_SIZE = 640 CLASSES = ("person", "bicycle", "car", "motorbike ", "aeroplane ", "bus ", "train", "truck ", "boat", "traffic light", "fire hydrant", "stop sign ", "parking meter", "bench", "bird", "cat", "dog ", "horse ", "sheep", "cow", "elephant", "bear", "zebra ", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife ", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza ", "donut", "cake", "chair", "sofa", "pottedplant", "bed", "diningtable", "toilet ", "tvmonitor", "laptop ", "mouse ", "remote ", "keyboard ", "cell phone", "microwave ", "oven ", "toaster", "sink", "refrigerator ", "book", "clock", "vase", "scissors ", "teddy bear ", "hair drier", "toothbrush ") def sigmoid(x): return 1 / (1 + np.exp(-x)) def xywh2xyxy(x): # Convert [x, y, w, h] to [x1, y1, x2, y2] y = np.copy(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y return y def process(input, mask, anchors): anchors = [anchors[i] for i in mask] grid_h, grid_w = map(int, input.shape[0:2]) box_confidence = sigmoid(input[..., 4]) box_confidence = np.expand_dims(box_confidence, axis=-1) box_class_probs = sigmoid(input[..., 5:]) box_xy = sigmoid(input[..., :2])\*2 - 0.5 col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w) row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h) col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2) row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2) grid = np.concatenate((col, row), axis=-1) box_xy += grid box_xy \*= int(IMG_SIZE/grid_h) box_wh = pow(sigmoid(input[..., 2:4])\*2, 2) box_wh = box_wh \* anchors box = np.concatenate((box_xy, box_wh), axis=-1) return box, box_confidence, box_class_probs def filter\_boxes(boxes, box_confidences, box_class_probs): """Filter boxes with box threshold. It's a bit different with origin yolov5 post process! # Arguments boxes: ndarray, boxes of objects. box\_confidences: ndarray, confidences of objects. box\_class\_probs: ndarray, class\_probs of objects. # Returns boxes: ndarray, filtered boxes. classes: ndarray, classes for boxes. scores: ndarray, scores for boxes. """ boxes = boxes.reshape(-1, 4) box_confidences = box_confidences.reshape(-1) box_class_probs = box_class_probs.reshape(-1, box_class_probs.shape[-1]) _box_pos = np.where(box_confidences >= OBJ_THRESH) boxes = boxes[_box_pos] box_confidences = box_confidences[_box_pos] box_class_probs = box_class_probs[_box_pos] class_max_score = np.max(box_class_probs, axis=-1) classes = np.argmax(box_class_probs, axis=-1) _class_pos = np.where(class_max_score >= OBJ_THRESH) boxes = boxes[_class_pos] classes = classes[_class_pos] scores = (class_max_score\* box_confidences)[_class_pos] return boxes, classes, scores def nms\_boxes(boxes, scores): """Suppress non-maximal boxes. # Arguments boxes: ndarray, boxes of objects. scores: ndarray, scores of objects. # Returns keep: ndarray, index of effective boxes. """ x = boxes[:, 0] y = boxes[:, 1] w = boxes[:, 2] - boxes[:, 0] h = boxes[:, 3] - boxes[:, 1] areas = w \* h order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x[i], x[order[1:]]) yy1 = np.maximum(y[i], y[order[1:]]) xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]]) yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]]) w1 = np.maximum(0.0, xx2 - xx1 + 0.00001) h1 = np.maximum(0.0, yy2 - yy1 + 0.00001) inter = w1 \* h1 ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= NMS_THRESH)[0] order = order[inds + 1] keep = np.array(keep) return keep def yolov5\_post\_process(input_data): masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]] anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]] boxes, classes, scores = [], [], [] for input, mask in zip(input_data, masks): b, c, s = process(input, mask, anchors) b, c, s = filter_boxes(b, c, s) boxes.append(b) classes.append(c) scores.append(s) boxes = np.concatenate(boxes) boxes = xywh2xyxy(boxes) classes = np.concatenate(classes) scores = np.concatenate(scores) nboxes, nclasses, nscores = [], [], [] for c in set(classes): inds = np.where(classes == c) b = boxes[inds] c = classes[inds] s = scores[inds] keep = nms_boxes(b, s) nboxes.append(b[keep]) nclasses.append(c[keep]) nscores.append(s[keep]) if not nclasses and not nscores: return None, None, None boxes = np.concatenate(nboxes) classes = np.concatenate(nclasses) scores = np.concatenate(nscores) return boxes, classes, scores def draw(image, boxes, scores, classes): """Draw the boxes on the image. # Argument: image: original image. boxes: ndarray, boxes of objects. **自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。** **深知大多数Linux运维工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!** **因此收集整理了一份《2024年Linux运维全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。** ![img](https://img-blog.csdnimg.cn/img_convert/d32c4877d6983eb2581f64dd8e63e159.png) ![img](https://img-blog.csdnimg.cn/img_convert/39448e46689254b908ddd1adcf304bf3.png) ![img](https://img-blog.csdnimg.cn/img_convert/084523c48f8e4a796028a172bf9a9d12.png) ![img](https://img-blog.csdnimg.cn/img_convert/bc3f817ce2dccd5ad8606a8f7ad6120e.png) ![img](https://img-blog.csdnimg.cn/img_convert/9d32451b027103573340d86752693bbf.png) **既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Linux运维知识点,真正体系化!** **由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新** **如果你觉得这些内容对你有帮助,可以添加VX:vip1024b (备注Linux运维获取)** ![img](https://img-blog.csdnimg.cn/img_convert/811dcec0d2b63e163573b8fd36505e69.jpeg) 为了做好运维面试路上的助攻手,特整理了上百道 **【运维技术栈面试题集锦】** ,让你面试不慌心不跳,高薪offer怀里抱! 这次整理的面试题,**小到shell、MySQL,大到K8s等云原生技术栈,不仅适合运维新人入行面试需要,还适用于想提升进阶跳槽加薪的运维朋友。** ![](https://img-blog.csdnimg.cn/img_convert/48c2496acb52a2c4ab5e6268499025ad.png) 本份面试集锦涵盖了 * **174 道运维工程师面试题** * **128道k8s面试题** * **108道shell脚本面试题** * **200道Linux面试题** * **51道docker面试题** * **35道Jenkis面试题** * **78道MongoDB面试题** * **17道ansible面试题** * **60道dubbo面试题** * **53道kafka面试** * **18道mysql面试题** * **40道nginx面试题** * **77道redis面试题** * **28道zookeeper** **总计 1000+ 道面试题, 内容 又全含金量又高** * **174道运维工程师面试题** > 1、什么是运维? > 2、在工作中,运维人员经常需要跟运营人员打交道,请问运营人员是做什么工作的? > 3、现在给你三百台服务器,你怎么对他们进行管理? > 4、简述raid0 raid1raid5二种工作模式的工作原理及特点 > 5、LVS、Nginx、HAproxy有什么区别?工作中你怎么选择? > 6、Squid、Varinsh和Nginx有什么区别,工作中你怎么选择? > 7、Tomcat和Resin有什么区别,工作中你怎么选择? > 8、什么是中间件?什么是jdk? > 9、讲述一下Tomcat8005、8009、8080三个端口的含义? > 10、什么叫CDN? > 11、什么叫网站灰度发布? > 12、简述DNS进行域名解析的过程? > 13、RabbitMQ是什么东西? > 14、讲一下Keepalived的工作原理? > 15、讲述一下LVS三种模式的工作过程? > 16、mysql的innodb如何定位锁问题,mysql如何减少主从复制延迟? > 17、如何重置mysql root密码? [**一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!**](https://bbs.csdn.net/forums/4304bb5a486d4c3ab8389e65ecb71ac0) **AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算** 15、讲述一下LVS三种模式的工作过程? > 16、mysql的innodb如何定位锁问题,mysql如何减少主从复制延迟? > 17、如何重置mysql root密码? [**一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!**](https://bbs.csdn.net/forums/4304bb5a486d4c3ab8389e65ecb71ac0) **AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算**
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。