赞
踩
目录
C# Onnx yolov8 水表读数检测
Model Properties
-------------------------
date:2024-01-31T10:18:10.141465
author:Ultralytics
task:detect
license:AGPL-3.0 https://ultralytics.com/license
version:8.0.172
stride:32
batch:1
imgsz:[640, 640]
names:{0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'counter', 11: 'liter'}
---------------------------------------------------------------
Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------
Outputs
-------------------------
name:output0
tensor:Float[1, 16, 8400]
---------------------------------------------------------------
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Text;
using System.Windows.Forms;
namespace Onnx_Yolov8_Demo
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
string image_path = "";
string startupPath;
string classer_path;
DateTime dt1 = DateTime.Now;
DateTime dt2 = DateTime.Now;
string model_path;
Mat image;
DetectionResult result_pro;
Mat result_image;
Result result;
SessionOptions options;
InferenceSession onnx_session;
Tensor<float> input_tensor;
List<NamedOnnxValue> input_container;
IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
DisposableNamedOnnxValue[] results_onnxvalue;
Tensor<float> result_tensors;
StringBuilder sb = new StringBuilder();
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
pictureBox1.Image = null;
image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
textBox1.Text = "";
image = new Mat(image_path);
pictureBox2.Image = null;
}
private void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return;
}
button2.Enabled = false;
pictureBox2.Image = null;
textBox1.Text = "";
sb.Clear();
//图片缩放
image = new Mat(image_path);
int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
Rect roi = new Rect(0, 0, image.Cols, image.Rows);
image.CopyTo(new Mat(max_image, roi));
float[] result_array = new float[8400 * 84];
float[] factors = new float[2];
factors[0] = factors[1] = (float)(max_image_length / 640.0);
// 将图片转为RGB通道
Mat image_rgb = new Mat();
Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
Mat resize_image = new Mat();
Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));
// 输入Tensor
for (int y = 0; y < resize_image.Height; y++)
{
for (int x = 0; x < resize_image.Width; x++)
{
input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
}
}
//将 input_tensor 放入一个输入参数的容器,并指定名称
input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));
dt1 = DateTime.Now;
//运行 Inference 并获取结果
result_infer = onnx_session.Run(input_container);
dt2 = DateTime.Now;
// 将输出结果转为DisposableNamedOnnxValue数组
results_onnxvalue = result_infer.ToArray();
// 读取第一个节点输出并转为Tensor数据
result_tensors = results_onnxvalue[0].AsTensor<float>();
result_array = result_tensors.ToArray();
resize_image.Dispose();
image_rgb.Dispose();
result_pro = new DetectionResult(classer_path, factors);
result = result_pro.process_result(result_array);
result_image = result_pro.draw_result(result, image.Clone());
if (!result_image.Empty())
{
pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
sb.AppendLine("--------------------------------------------");
for (int i = 0; i < result.length; i++)
{
sb.AppendLine(result.classes[i] + "-" + result.scores[i].ToString("F2"));
}
textBox1.Text = sb.ToString();
}
else
{
textBox1.Text = "无信息";
}
button2.Enabled = true;
}
private void Form1_Load(object sender, EventArgs e)
{
startupPath = System.Windows.Forms.Application.StartupPath;
model_path = "model/last.onnx";
classer_path = "model/lable.txt";
// 创建输出会话,用于输出模型读取信息
options = new SessionOptions();
options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
// 创建推理模型类,读取本地模型文件
onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
// 输入Tensor
input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
// 创建输入容器
input_container = new List<NamedOnnxValue>();
image_path = "test_img/1.jpg";
pictureBox1.Image = new Bitmap(image_path);
image = new Mat(image_path);
}
private void pictureBox1_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox1.Image);
}
private void pictureBox2_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox2.Image);
}
SaveFileDialog sdf = new SaveFileDialog();
private void button3_Click(object sender, EventArgs e)
{
if (pictureBox2.Image == null)
{
return;
}
Bitmap output = new Bitmap(pictureBox2.Image);
sdf.Title = "保存";
sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
if (sdf.ShowDialog() == DialogResult.OK)
{
switch (sdf.FilterIndex)
{
case 1:
{
output.Save(sdf.FileName, ImageFormat.Jpeg);
break;
}
case 2:
{
output.Save(sdf.FileName, ImageFormat.Png);
break;
}
case 3:
{
output.Save(sdf.FileName, ImageFormat.Bmp);
break;
}
case 4:
{
output.Save(sdf.FileName, ImageFormat.Emf);
break;
}
case 5:
{
output.Save(sdf.FileName, ImageFormat.Exif);
break;
}
case 6:
{
output.Save(sdf.FileName, ImageFormat.Gif);
break;
}
case 7:
{
output.Save(sdf.FileName, ImageFormat.Icon);
break;
}
case 8:
{
output.Save(sdf.FileName, ImageFormat.Tiff);
break;
}
case 9:
{
output.Save(sdf.FileName, ImageFormat.Wmf);
break;
}
}
MessageBox.Show("保存成功,位置:" + sdf.FileName);
}
}
}
}
- using Microsoft.ML.OnnxRuntime;
- using Microsoft.ML.OnnxRuntime.Tensors;
- using OpenCvSharp;
- using System;
- using System.Collections.Generic;
- using System.Drawing;
- using System.Drawing.Imaging;
- using System.Linq;
- using System.Text;
- using System.Windows.Forms;
-
- namespace Onnx_Yolov8_Demo
- {
- public partial class Form1 : Form
- {
- public Form1()
- {
- InitializeComponent();
- }
-
- string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
- string image_path = "";
- string startupPath;
- string classer_path;
- DateTime dt1 = DateTime.Now;
- DateTime dt2 = DateTime.Now;
- string model_path;
- Mat image;
- DetectionResult result_pro;
- Mat result_image;
- Result result;
-
- SessionOptions options;
- InferenceSession onnx_session;
- Tensor<float> input_tensor;
- List<NamedOnnxValue> input_container;
- IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
- DisposableNamedOnnxValue[] results_onnxvalue;
-
- Tensor<float> result_tensors;
-
- StringBuilder sb = new StringBuilder();
-
- private void button1_Click(object sender, EventArgs e)
- {
- OpenFileDialog ofd = new OpenFileDialog();
- ofd.Filter = fileFilter;
- if (ofd.ShowDialog() != DialogResult.OK) return;
- pictureBox1.Image = null;
- image_path = ofd.FileName;
- pictureBox1.Image = new Bitmap(image_path);
- textBox1.Text = "";
- image = new Mat(image_path);
- pictureBox2.Image = null;
- }
-
- private void button2_Click(object sender, EventArgs e)
- {
- if (image_path == "")
- {
- return;
- }
-
- button2.Enabled = false;
- pictureBox2.Image = null;
- textBox1.Text = "";
- sb.Clear();
-
- //图片缩放
- image = new Mat(image_path);
- int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
- Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
- Rect roi = new Rect(0, 0, image.Cols, image.Rows);
- image.CopyTo(new Mat(max_image, roi));
-
- float[] result_array = new float[8400 * 84];
- float[] factors = new float[2];
- factors[0] = factors[1] = (float)(max_image_length / 640.0);
-
- // 将图片转为RGB通道
- Mat image_rgb = new Mat();
- Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
- Mat resize_image = new Mat();
- Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));
-
- // 输入Tensor
- for (int y = 0; y < resize_image.Height; y++)
- {
- for (int x = 0; x < resize_image.Width; x++)
- {
- input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
- input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
- input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
- }
- }
-
- //将 input_tensor 放入一个输入参数的容器,并指定名称
- input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));
-
- dt1 = DateTime.Now;
- //运行 Inference 并获取结果
- result_infer = onnx_session.Run(input_container);
- dt2 = DateTime.Now;
-
- // 将输出结果转为DisposableNamedOnnxValue数组
- results_onnxvalue = result_infer.ToArray();
-
- // 读取第一个节点输出并转为Tensor数据
- result_tensors = results_onnxvalue[0].AsTensor<float>();
-
- result_array = result_tensors.ToArray();
-
- resize_image.Dispose();
- image_rgb.Dispose();
-
- result_pro = new DetectionResult(classer_path, factors);
- result = result_pro.process_result(result_array);
- result_image = result_pro.draw_result(result, image.Clone());
-
- if (!result_image.Empty())
- {
- pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
- sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
- sb.AppendLine("--------------------------------------------");
-
- for (int i = 0; i < result.length; i++)
- {
- sb.AppendLine(result.classes[i] + "-" + result.scores[i].ToString("F2"));
- }
-
- textBox1.Text = sb.ToString();
- }
- else
- {
- textBox1.Text = "无信息";
- }
-
- button2.Enabled = true;
- }
-
- private void Form1_Load(object sender, EventArgs e)
- {
- startupPath = System.Windows.Forms.Application.StartupPath;
-
- model_path = "model/last.onnx";
- classer_path = "model/lable.txt";
-
- // 创建输出会话,用于输出模型读取信息
- options = new SessionOptions();
- options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
- options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
-
- // 创建推理模型类,读取本地模型文件
- onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
-
- // 输入Tensor
- input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
- // 创建输入容器
- input_container = new List<NamedOnnxValue>();
-
- image_path = "test_img/1.jpg";
- pictureBox1.Image = new Bitmap(image_path);
- image = new Mat(image_path);
-
- }
-
- private void pictureBox1_DoubleClick(object sender, EventArgs e)
- {
- Common.ShowNormalImg(pictureBox1.Image);
- }
-
- private void pictureBox2_DoubleClick(object sender, EventArgs e)
- {
- Common.ShowNormalImg(pictureBox2.Image);
- }
-
- SaveFileDialog sdf = new SaveFileDialog();
- private void button3_Click(object sender, EventArgs e)
- {
- if (pictureBox2.Image == null)
- {
- return;
- }
- Bitmap output = new Bitmap(pictureBox2.Image);
- sdf.Title = "保存";
- sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
- if (sdf.ShowDialog() == DialogResult.OK)
- {
- switch (sdf.FilterIndex)
- {
- case 1:
- {
- output.Save(sdf.FileName, ImageFormat.Jpeg);
- break;
- }
- case 2:
- {
- output.Save(sdf.FileName, ImageFormat.Png);
- break;
- }
- case 3:
- {
- output.Save(sdf.FileName, ImageFormat.Bmp);
- break;
- }
- case 4:
- {
- output.Save(sdf.FileName, ImageFormat.Emf);
- break;
- }
- case 5:
- {
- output.Save(sdf.FileName, ImageFormat.Exif);
- break;
- }
- case 6:
- {
- output.Save(sdf.FileName, ImageFormat.Gif);
- break;
- }
- case 7:
- {
- output.Save(sdf.FileName, ImageFormat.Icon);
- break;
- }
-
- case 8:
- {
- output.Save(sdf.FileName, ImageFormat.Tiff);
- break;
- }
- case 9:
- {
- output.Save(sdf.FileName, ImageFormat.Wmf);
- break;
- }
- }
- MessageBox.Show("保存成功,位置:" + sdf.FileName);
- }
- }
- }
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。