当前位置:   article > 正文

C# Onnx yolov8 水表读数检测_yolo水表读书

yolo水表读书

目录

效果

模型信息

项目

代码

训练数据

下载


C# Onnx yolov8 水表读数检测

效果

模型信息

Model Properties
-------------------------
date:2024-01-31T10:18:10.141465
author:Ultralytics
task:detect
license:AGPL-3.0 https://ultralytics.com/license
version:8.0.172
stride:32
batch:1
imgsz:[640, 640]
names:{0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'counter', 11: 'liter'}
---------------------------------------------------------------

Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------

Outputs
-------------------------
name:output0
tensor:Float[1, 16, 8400]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Onnx_Yolov8_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        string classer_path;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        DetectionResult result_pro;
        Mat result_image;
        Result result;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors;

        StringBuilder sb = new StringBuilder();

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";
            sb.Clear();

            //图片缩放
            image = new Mat(image_path);
            int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
            Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
            Rect roi = new Rect(0, 0, image.Cols, image.Rows);
            image.CopyTo(new Mat(max_image, roi));

            float[] result_array = new float[8400 * 84];
            float[] factors = new float[2];
            factors[0] = factors[1] = (float)(max_image_length / 640.0);

            // 将图片转为RGB通道
            Mat image_rgb = new Mat();
            Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
            Mat resize_image = new Mat();
            Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));

            // 输入Tensor
            for (int y = 0; y < resize_image.Height; y++)
            {
                for (int x = 0; x < resize_image.Width; x++)
                {
                    input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
                    input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
                    input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
                }
            }

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();

            result_array = result_tensors.ToArray();

            resize_image.Dispose();
            image_rgb.Dispose();

            result_pro = new DetectionResult(classer_path, factors);
            result = result_pro.process_result(result_array);
            result_image = result_pro.draw_result(result, image.Clone());

            if (!result_image.Empty())
            {
                pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
                sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
                sb.AppendLine("--------------------------------------------");

                for (int i = 0; i < result.length; i++)
                {
                    sb.AppendLine(result.classes[i] + "-" + result.scores[i].ToString("F2"));
                }

                textBox1.Text = sb.ToString();
            }
            else
            {
                textBox1.Text = "无信息";
            }

            button2.Enabled = true;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;

            model_path = "model/last.onnx";
            classer_path = "model/lable.txt";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/1.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);

        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        SaveFileDialog sdf = new SaveFileDialog();
        private void button3_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            sdf.Title = "保存";
            sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                    case 4:
                        {
                            output.Save(sdf.FileName, ImageFormat.Emf);
                            break;
                        }
                    case 5:
                        {
                            output.Save(sdf.FileName, ImageFormat.Exif);
                            break;
                        }
                    case 6:
                        {
                            output.Save(sdf.FileName, ImageFormat.Gif);
                            break;
                        }
                    case 7:
                        {
                            output.Save(sdf.FileName, ImageFormat.Icon);
                            break;
                        }

                    case 8:
                        {
                            output.Save(sdf.FileName, ImageFormat.Tiff);
                            break;
                        }
                    case 9:
                        {
                            output.Save(sdf.FileName, ImageFormat.Wmf);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
            }
        }
    }
}

  1. using Microsoft.ML.OnnxRuntime;
  2. using Microsoft.ML.OnnxRuntime.Tensors;
  3. using OpenCvSharp;
  4. using System;
  5. using System.Collections.Generic;
  6. using System.Drawing;
  7. using System.Drawing.Imaging;
  8. using System.Linq;
  9. using System.Text;
  10. using System.Windows.Forms;
  11. namespace Onnx_Yolov8_Demo
  12. {
  13. public partial class Form1 : Form
  14. {
  15. public Form1()
  16. {
  17. InitializeComponent();
  18. }
  19. string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
  20. string image_path = "";
  21. string startupPath;
  22. string classer_path;
  23. DateTime dt1 = DateTime.Now;
  24. DateTime dt2 = DateTime.Now;
  25. string model_path;
  26. Mat image;
  27. DetectionResult result_pro;
  28. Mat result_image;
  29. Result result;
  30. SessionOptions options;
  31. InferenceSession onnx_session;
  32. Tensor<float> input_tensor;
  33. List<NamedOnnxValue> input_container;
  34. IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
  35. DisposableNamedOnnxValue[] results_onnxvalue;
  36. Tensor<float> result_tensors;
  37. StringBuilder sb = new StringBuilder();
  38. private void button1_Click(object sender, EventArgs e)
  39. {
  40. OpenFileDialog ofd = new OpenFileDialog();
  41. ofd.Filter = fileFilter;
  42. if (ofd.ShowDialog() != DialogResult.OK) return;
  43. pictureBox1.Image = null;
  44. image_path = ofd.FileName;
  45. pictureBox1.Image = new Bitmap(image_path);
  46. textBox1.Text = "";
  47. image = new Mat(image_path);
  48. pictureBox2.Image = null;
  49. }
  50. private void button2_Click(object sender, EventArgs e)
  51. {
  52. if (image_path == "")
  53. {
  54. return;
  55. }
  56. button2.Enabled = false;
  57. pictureBox2.Image = null;
  58. textBox1.Text = "";
  59. sb.Clear();
  60. //图片缩放
  61. image = new Mat(image_path);
  62. int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
  63. Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
  64. Rect roi = new Rect(0, 0, image.Cols, image.Rows);
  65. image.CopyTo(new Mat(max_image, roi));
  66. float[] result_array = new float[8400 * 84];
  67. float[] factors = new float[2];
  68. factors[0] = factors[1] = (float)(max_image_length / 640.0);
  69. // 将图片转为RGB通道
  70. Mat image_rgb = new Mat();
  71. Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
  72. Mat resize_image = new Mat();
  73. Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));
  74. // 输入Tensor
  75. for (int y = 0; y < resize_image.Height; y++)
  76. {
  77. for (int x = 0; x < resize_image.Width; x++)
  78. {
  79. input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
  80. input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
  81. input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
  82. }
  83. }
  84. //input_tensor 放入一个输入参数的容器,并指定名称
  85. input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));
  86. dt1 = DateTime.Now;
  87. //运行 Inference 并获取结果
  88. result_infer = onnx_session.Run(input_container);
  89. dt2 = DateTime.Now;
  90. // 将输出结果转为DisposableNamedOnnxValue数组
  91. results_onnxvalue = result_infer.ToArray();
  92. // 读取第一个节点输出并转为Tensor数据
  93. result_tensors = results_onnxvalue[0].AsTensor<float>();
  94. result_array = result_tensors.ToArray();
  95. resize_image.Dispose();
  96. image_rgb.Dispose();
  97. result_pro = new DetectionResult(classer_path, factors);
  98. result = result_pro.process_result(result_array);
  99. result_image = result_pro.draw_result(result, image.Clone());
  100. if (!result_image.Empty())
  101. {
  102. pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
  103. sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
  104. sb.AppendLine("--------------------------------------------");
  105. for (int i = 0; i < result.length; i++)
  106. {
  107. sb.AppendLine(result.classes[i] + "-" + result.scores[i].ToString("F2"));
  108. }
  109. textBox1.Text = sb.ToString();
  110. }
  111. else
  112. {
  113. textBox1.Text = "无信息";
  114. }
  115. button2.Enabled = true;
  116. }
  117. private void Form1_Load(object sender, EventArgs e)
  118. {
  119. startupPath = System.Windows.Forms.Application.StartupPath;
  120. model_path = "model/last.onnx";
  121. classer_path = "model/lable.txt";
  122. // 创建输出会话,用于输出模型读取信息
  123. options = new SessionOptions();
  124. options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
  125. options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
  126. // 创建推理模型类,读取本地模型文件
  127. onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
  128. // 输入Tensor
  129. input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
  130. // 创建输入容器
  131. input_container = new List<NamedOnnxValue>();
  132. image_path = "test_img/1.jpg";
  133. pictureBox1.Image = new Bitmap(image_path);
  134. image = new Mat(image_path);
  135. }
  136. private void pictureBox1_DoubleClick(object sender, EventArgs e)
  137. {
  138. Common.ShowNormalImg(pictureBox1.Image);
  139. }
  140. private void pictureBox2_DoubleClick(object sender, EventArgs e)
  141. {
  142. Common.ShowNormalImg(pictureBox2.Image);
  143. }
  144. SaveFileDialog sdf = new SaveFileDialog();
  145. private void button3_Click(object sender, EventArgs e)
  146. {
  147. if (pictureBox2.Image == null)
  148. {
  149. return;
  150. }
  151. Bitmap output = new Bitmap(pictureBox2.Image);
  152. sdf.Title = "保存";
  153. sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
  154. if (sdf.ShowDialog() == DialogResult.OK)
  155. {
  156. switch (sdf.FilterIndex)
  157. {
  158. case 1:
  159. {
  160. output.Save(sdf.FileName, ImageFormat.Jpeg);
  161. break;
  162. }
  163. case 2:
  164. {
  165. output.Save(sdf.FileName, ImageFormat.Png);
  166. break;
  167. }
  168. case 3:
  169. {
  170. output.Save(sdf.FileName, ImageFormat.Bmp);
  171. break;
  172. }
  173. case 4:
  174. {
  175. output.Save(sdf.FileName, ImageFormat.Emf);
  176. break;
  177. }
  178. case 5:
  179. {
  180. output.Save(sdf.FileName, ImageFormat.Exif);
  181. break;
  182. }
  183. case 6:
  184. {
  185. output.Save(sdf.FileName, ImageFormat.Gif);
  186. break;
  187. }
  188. case 7:
  189. {
  190. output.Save(sdf.FileName, ImageFormat.Icon);
  191. break;
  192. }
  193. case 8:
  194. {
  195. output.Save(sdf.FileName, ImageFormat.Tiff);
  196. break;
  197. }
  198. case 9:
  199. {
  200. output.Save(sdf.FileName, ImageFormat.Wmf);
  201. break;
  202. }
  203. }
  204. MessageBox.Show("保存成功,位置:" + sdf.FileName);
  205. }
  206. }
  207. }
  208. }

训练数据

下载

训练数据下载

源码下载

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/698023
推荐阅读
相关标签
  

闽ICP备14008679号