赞
踩
依据MPU6050的角速度原始数据计算佩戴者步数,由于依据的是角速度,只适用与手环或者腿环等设备。本项目的主控芯片是nRF52832(SDK:Nordic SDK 17.0.2.),但算法通用,读取原始数据的完整工程来自艾克姆,已上传个人主页。
不知为何,在nRF53832的带BLE功能的工程中,读取MPU6050的原始数据频率如果过快的话MCU会卡死。本算法仅需50ms读取一次原始数据即可,对CPU压力较小。
人在行走过程中,腿部垂直于人体矢状面方向的角速度变化最为明显,且具有一定的规律性,可以通过这一规律性来判断步数。角速度在行走过程之中的大致变化曲线如图一所示:
其中摆动中相就是走路过程中两腿并排的那一刻,此时角速度最大[1]。由图可以看出在每一步中,角速度有一个骤增和一个骤减的过程最具有标志性,若是能够通过算法捕获到这个现象,就可以实现计步功能了。
大致思路如下:
MCU配置一个50ms定时器,每50ms读取一下当前角速度原始数据(Gyro_new_sample),并将上一个50ms的原始数据保存(Gyro_old_sample)。同时实时更新出现过的角速度原始数据最大值(Gyro_max)、最小值(Gyro_min)和二者平均值(Gyro_mid)。一旦出现下述两种情况:
1.Gyro_old_sample < Gyro_mid < Gyro_new_sample (骤增现象);
2.Gyro_new_sample < Gyro_mid < Gyro_old_sample (骤减现象);
就记为一次有效的走步,如图二所示。
单次采样数据必然不可信,所以要多次采样取平均值。
取完平均值后的数据依然不一定是可信的数据,如果本次采样的数据和上一个50ms采样的数据差值过小或者过大,应当不予采纳,需要设置可信赖变化量的下限和上限,上限和下限的值需要开发者根据自己MCU的实际情况进行设置,这里的值仅作参考。
- #define ABS(a) (0 - (a)) > 0 ? (-(a)) : (a) //取a的绝对值
- #define SAMPLE_NUM 10 //采样10次取平均值
- #define MIN_RELIABLE_VARIATION 500 //最小可信赖变化量
- #define MAX_RELIABLE_VARIATION 5000 //最大可信赖变化量
-
- //三轴数据
- typedef struct
- {
- int16_t X;
- int16_t Y;
- int16_t Z;
- }axis_value_t;
- axis_value_t old_ave_GyroValue, ave_GyroValue;
- //极值数据
- typedef struct
- {
- axis_value_t max;
- axis_value_t min;
- }peak_value_t;
- peak_value_t peak_value;
大致过程是:保存上一次采样数据 → 均值采样本次数据 → 计算本次和上次的差值 → 检验差值大小(若超限则将本次数据回退到上一次的大小) → 保存最大值和最小值 。这个函数50ms会被调用一次。
- void Gyro_sample_update(void)
- {
- axis_value_t GyroValue;
- axis_value_t change;
- int sum[3] = {0};
- uint8_t success_num = 0;
-
- //保存上一次测量的原始数据
- old_ave_GyroValue.X = ave_GyroValue.X;
- old_ave_GyroValue.Y = ave_GyroValue.Y;
- old_ave_GyroValue.Z = ave_GyroValue.Z;
-
- //多次测量取平均值
- for(uint8_t i = 0; i < SAMPLE_NUM; i++)
- {
- if(MPU6050_ReadGyro(&GyroValue.X , &GyroValue.Y , &GyroValue.Z ) == true)
- {
- sum[0] += GyroValue.X;
- sum[1] += GyroValue.Y;
- sum[2] += GyroValue.Z;
- success_num ++;
- }
- }
- ave_GyroValue.X = sum[0] / success_num;
- ave_GyroValue.Y = sum[1] / success_num;
- ave_GyroValue.Z = sum[2] / success_num;
-
- //原始数据变化量
- change.X = ABS(ave_GyroValue.X - old_ave_GyroValue.X);
- change.Y = ABS(ave_GyroValue.Y - old_ave_GyroValue.Y);
- change.Z = ABS(ave_GyroValue.Z - old_ave_GyroValue.Z);
-
- //如果变化量超出可接受的变化值,则将原始数据退回到上一次的大小
- if(change.X < MIN_RELIABLE_VARIATION || change.X > MAX_RELIABLE_VARIATION)
- {
- ave_GyroValue.X = old_ave_GyroValue.X;
- }
- if(change.Y < MIN_RELIABLE_VARIATION || change.Y > MAX_RELIABLE_VARIATION)
- {
- ave_GyroValue.Y = old_ave_GyroValue.Y;
- }
- if(change.Z < MIN_RELIABLE_VARIATION || change.Z > MAX_RELIABLE_VARIATION)
- {
- ave_GyroValue.Z = old_ave_GyroValue.Z;
- }
-
- //分别保存三轴角速度原始数据的最大值和最小值
- peak_value.max.X = MAX(peak_value.max.X , ave_GyroValue.X);
- peak_value.min.X = MIN(peak_value.min.X , ave_GyroValue.X);
- peak_value.max.Y = MAX(peak_value.max.Y , ave_GyroValue.Y);
- peak_value.min.Y = MIN(peak_value.min.Y , ave_GyroValue.Y);
- peak_value.max.Z = MAX(peak_value.max.Z , ave_GyroValue.Z);
- peak_value.min.Z = MIN(peak_value.min.Z , ave_GyroValue.Z);
- }
注:MPU6050_ReadGyro(&GyroValue.X , &GyroValue.Y , &GyroValue.Z )是读取三轴角速度原始数据的函数,将数据保存在GyroValue中;succee_num是用来防止这个函数返回的是false从而影响结果。(但实际采用过程中大概率是不会采样失败的,可以删去,直接除以SAMPLE_NUM就行)
只有知道MPU6050哪个轴是更接近垂直于人体矢状面的,才能确定究竟要使用哪个轴的原始数据进行计步。
- #define ACTIVE_NUM 30 //最活跃轴更新周期
- #define ACTIVE_NULL 0 //最活跃轴未知
- #define ACTIVE_X 1 //最活跃轴是X
- #define ACTIVE_Y 2 //最活跃轴是Y
- #define ACTIVE_Z 3 //最活跃轴是Z
- uint8_t most_active_axis = ACTIVE_NULL; //记录最活跃轴
这个函数也是50ms被调用一次。
每一次被调用时,都会计算一次change值,也就是上一次和这一次原始数据的差值,然后比较这三个差值的大小,增加最大差值轴的活跃度权重。这里是每1.5秒(由ACTIVE_NUM决定)比较一次权重值,权重最大的轴就是最活跃轴,然后把权重都清零,下一个1.5秒再重新判断一次。
- void which_is_active(void)
- {
- axis_value_t change;
- static axis_value_t active; //三个轴的活跃度权重
- static uint8_t active_sample_num;
-
- Gyro_sample_update();
- active_sample_num ++;
-
- //每隔一段时间,比较一次权重大小,判断最活跃轴
- if(active_sample_num >= ACTIVE_NUM)
- {
- if(active.X > active.Y && active.X > active.Z)
- {
- most_active_axis = ACTIVE_X;
- }
- else if(active.Y > active.X && active.Y > active.Z)
- {
- most_active_axis = ACTIVE_Y;
- }
- else if(active.Z > active.X && active.Z > active.Y)
- {
- most_active_axis = ACTIVE_Z;
- }
- else
- {
- most_active_axis = ACTIVE_NULL;
- }
- active_sample_num = 0;
- active.X = 0;
- active.Y = 0;
- active.Z = 0;
- }
-
- //原始数据变化量
- change.X = ABS(ave_GyroValue.X - old_ave_GyroValue.X);
- change.Y = ABS(ave_GyroValue.Y - old_ave_GyroValue.Y);
- change.Z = ABS(ave_GyroValue.Z - old_ave_GyroValue.Z);
-
- //增加三轴活跃度权重
- if(change.X > change.Y && change.X > change.Z)
- {
- active.X ++;
- }
- else if(change.Y > change.X && change.Y > change.Z)
- {
- active.Y ++;
- }
- else if(change.Z > change.X && change.Z > change.Y)
- {
- active.Z ++;
- }
- }
一切准备就绪,接下来要捕获原始数据骤增和骤减现象了。
uint16_t step_count;
取最大值和最小值的均值mid,每当出现图二中的情况,则算作一次有效走步。
- void detect_step(void)
- {
- int16_t mid;
- which_is_active();
- switch(most_active_axis)
- {
- case ACTIVE_NULL:
- break;
- //捕捉原始数据骤增和骤减现象
- case ACTIVE_X:
- mid = (peak_value.max.X + peak_value.min.X) / 2;
- if(old_ave_GyroValue.X < mid && ave_GyroValue.X > mid)
- {
- step_count ++;
- }
- else if(old_ave_GyroValue.X > mid && ave_GyroValue.X < mid)
- {
- step_count ++;
- }
- break;
- case ACTIVE_Y:
- mid = (peak_value.max.Y + peak_value.min.Y) / 2;
- if(old_ave_GyroValue.Y < mid && ave_GyroValue.Y > mid)
- {
- step_count ++;
- }
- else if(old_ave_GyroValue.Y > mid && ave_GyroValue.Y < mid)
- {
- step_count ++;
- }
- break;
- case ACTIVE_Z:
- mid = (peak_value.max.Z + peak_value.min.Z) / 2;
- if(old_ave_GyroValue.Z < mid && ave_GyroValue.Z > mid)
- {
- step_count ++;
- }
- else if(old_ave_GyroValue.Z > mid && ave_GyroValue.Z < mid)
- {
- step_count ++;
- }
- break;
- default:
- break;
- }
- }
但是到这里还没有结束,step_count作为最终结果不够严谨,需要根据人类实际的走步速度,再对步数进行一次调整。
这是nRF52832的一个50ms定时器回调函数,只需关注核心部分:detect_step() 每50ms被调用一次,正常人走路1秒内不会超过3步,所以每300ms查看一次step_count 是不是为0 ,只要不是0 ,无论是多大都只算作1步,step就是最终的步数。
- uint16_t step;
-
- void timer3_handler(nrf_timer_event_t event_type, void* p_context)
- {
- static uint8_t step_time_count = 0;
- switch(event_type)
- {
- case NRF_TIMER_EVENT_COMPARE0:
-
- detect_step();
- step_time_count ++;
- if(step_time_count == 6) //300ms
- {
- step_time_count = 0;
- if(step_count != 0)
- {
- step_count = 0;
- step ++;
- }
- }
- break;
- default:
- break;
- }
- }
参考: (16条消息) 基于三轴加速度传感器的计步算法_Dancer__Sky的博客-CSDN博客_加速度计步算法
参考文献:[1] 李江慧,连春快,李玉榕 . 基于惯性传感器的穿戴式步态分析系统设计与实现[J] . 电气技术,2021(9):14-21
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。