赞
踩
ResNet一共有5个变种,其网络层数分别是18,34,50,101,152。主要区别在于使用的是两层残差块还是三层残差块,以及残差块的数量。ResNet-18和ResNet-34都是使用的两层残差块,而其余三个模型使用的是三层残差块,并且第三层的输出通道数为输入通道数的4倍。
公式为y=F(x)+x,在原来输出F(x)的基础上加上输入x
#定义两层的残差块 class Residual_2(nn.Module): def __init__(self, in_channels, out_channels, use_1x1conv=False, stride=1): super(Residual_2, self).__init__() #两个3*3的卷积层 self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, stride=stride) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) #1*1的卷积保证维度一致 if use_1x1conv: self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride) else: self.conv3 = None #BN层 self.bn1 = nn.BatchNorm2d(out_channels) self.bn2 = nn.BatchNorm2d(out_channels) def forward(self, X): Y = self.conv1(X) Y = self.bn1(Y) Y = torch.nn.functional.relu(Y) Y = self.conv2(Y) Y = self.bn2(Y) if self.conv3: X = self.conv3(X) return torch.nn.functional.relu(Y + X) #定义三层的残差块 class Residual_3(nn.Module): def __init__(self, in_channels, out_channels, use_1x1conv=False, stride=1): super(Residual_3, self).__init__() #三层卷积层 self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) self.conv3 = nn.Conv2d(out_channels, out_channels*4, kernel_size=1) #1*1的卷积保证维度一致 if use_1x1conv: self.conv4 = nn.Conv2d(in_channels, out_channels*4, kernel_size=1, stride=stride) else: self.conv4 = None #BN层 self.bn1 = nn.BatchNorm2d(out_channels) self.bn2 = nn.BatchNorm2d(out_channels) self.bn3 = nn.BatchNorm2d(out_channels*4) def forward(self, X): Y = self.conv1(X) Y = self.bn1(Y) Y = torch.nn.functional.relu(Y) Y = self.conv2(Y) Y = self.bn2(Y) Y = torch.nn.functional.relu(Y) Y = self.conv3(Y) Y = self.bn3(Y) if self.conv4: X = self.conv4(X) return torch.nn.functional.relu(Y + X)
当X与Y通道数目不同时,这里使用1x1的conv卷积层来使得最终的输入和输出的通道数达到一致
残差块的第一层会有一个参数stride,通过设置步长为2可以改变输出图片的尺寸
第一层的输入是in_channels,输出是out_channels,通过这一层之后卷积核的数量也会发生改变。其余层的输入和输出都是out_channels。特殊地,对于三层的残差块,最后一层的输出是out_channels*4
#类别数
classes=40
#平铺
class FlattenLayer(nn.Module):
def init(self):
super(FlattenLayer, self).init()
def forward(self, input):
return input.view(input.size(0), -1)
#全局平均池化层
class GlobalAvgPool2d(nn.Module):
def init(self):
super(GlobalAvgPool2d, self).init()
def forward(self, x):
return nn.functional.avg_pool2d(x, kernel_size=x.size()[2:])
def resnet_block(in_channels, out_channels, num_residuals, basicblock=2, first_block=False):
blk = []
for i in range(num_residuals):
if basicblock == 2:
if i == 0 and first_block == False :
blk.append(Residual_2(in_channels, out_channels, use_1x1conv=True, stride=2))
else :
blk.append(Residual_2(out_channels, out_channels))
else:
if i==0:
if first_block:
blk.append(Residual_3(in_channels, out_channels, use_1x1conv=True))
else :
blk.append(Residual_3(in_channels4, out_channels, use_1x1conv=True, stride=2))
else:
blk.append(Residual_3(out_channels4, out_channels, use_1x1conv=True))
return nn.Sequential(*blk)
def ResNet_model(layers): #前两层 net = nn.Sequential( # 7*7的卷积层 nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3), nn.BatchNorm2d(64), nn.ReLU(), # 3*3的最大池化层 nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ) #定义不同结构的ResNet if layers == 18: basicblock=2 num_residual=[2,2,2,2] elif layers == 34: basicblock=2 num_residual=[3,4,6,3] elif layers == 50: basicblock=3 num_residual=[3,4,6,3] elif layers == 101: basicblock=3 num_residual=[3,4,23,3] elif layers == 152: basicblock=3 num_residual=[3,8,36,3] else : exit("ResNet结构不对!") #添加block net.add_module("resnet_block1", resnet_block(64, 64, num_residual[0], basicblock, first_block=True)) net.add_module("resnet_block2", resnet_block(64, 128, num_residual[1], basicblock)) net.add_module("resnet_block3", resnet_block(128, 256, num_residual[2], basicblock)) net.add_module("resnet_block4", resnet_block(256, 512, num_residual[3], basicblock)) #添加平均池化层、全连接层 net.add_module("global_avg_pool", GlobalAvgPool2d()) if basicblock==2: net.add_module("fc", nn.Sequential(FlattenLayer(), nn.Linear(512, classes))) else: net.add_module("fc", nn.Sequential(FlattenLayer(), nn.Linear(2048, classes))) return net
网络的最开始是一个7X7的卷积层接上一个3X3的最大池化层。然后是四个block块,最后加上平均池化层和全连接层
五种ResNet模型均使用了四个block块,第一个block块不改变图片的尺寸,后面三个block块的第一个残差块的第一层均使用步长为2的卷积层来使尺寸减半。
对于三层的残差块,由于每个残差块中最后一层的输出通道数是输入通道数的4倍,所以除了第一个block的第一个残差块,其余残差块的输入通道数都要乘以4.
if __name__ == '__main__':
net = ResNet_model(152)
X = torch.rand((16, 3, 224, 224))
for name, layer in net.named_children():
X = layer(X)
print(name, ' output shape:\t', X.shape)
对ResNet_model()函数中的参数进行修改,即可调用不同结构的ResNet模型
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。