赞
踩
用 PyTorch 实现 ResNet 需要以下步骤:
以下是一个示例代码:
``` import torch import torch.nn as nn
class ResidualBlock(nn.Module): def init(self, in_channels, out_channels, stride=1, downsample=None): super(ResidualBlock, self).init() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(out_channels) self.downsample = downsample
- def forward(self, x):
- residual = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- if self.downsample:
- residual = self.downsample(x)
- out += residual
- out = self.relu(out)
- return out
class ResNet(nn.Module): def init(self, block, layers, num_classes=10): super(ResNet, self).init
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。