赞
踩
- bilibili视频《ChatGLM2-6B 部署与微调》、视频课件
- ChatGLM2-6B开源地址、官方博客、智谱清言
《LLMs模型速览(GPTs、LaMDA、GLM/ChatGLM、PaLM/Flan-PaLM、BLOOM、LLaMA、Alpaca)》
GLM
:一种基于Transformer架构进行改进的通用预训练框架,GLM将不同任务的预训练目标统一为自回归填空任务(Autoregressive Blank Infilling),使得模型在自然语言理解和文本生成方面性能都有所改善。
GLM-130B
:于2022年8月由清华智谱AI开源放出。该大语言模型基于之前提出的GLM(General Language Model),在Norm处理、激活函数、Mask机制等方面进行了调整,目的是训练出开源开放的高精度千亿中英双语稠密模型,能够让更多研发者用上千亿模型。
ChatGLM
: 基于GLM-130B
,引入面向对话的用户反馈,进行指令微调后得到的对话机器人。ChatGLM
解决了大基座模型在复杂问题、动态知识、人类对齐场景的不足。ChatGLM
于2023年3月开启申请内测,目前暂停了公开申请。
ChatGLM-6B
:由于ChatGLM
千亿参数版本暂未公开,为了与社区一起更好地推动大模型技术的发展,清华团队于2023.3开源了62亿参数版本的ChatGLM-6B
。结合模型量化技术,用户可以在消费级的显卡上进行本地部署。
该版本具有以下特点:
有关GLM、GLM130B、ChatGLM模型原理、结构、效果的更详细介绍,请参考《LLMs模型速览(GPTs、LaMDA、GLM/ChatGLM、PaLM/Flan-PaLM、BLOOM、LLaMA、Alpaca)》第三章。
清华KEG和数据挖掘小组(THUDM)在2023.06.25发布了中英双语对话模型ChatGLM2-6B
,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:
git clone https://github.com/THUDM/ChatGLM2-6B
cd ChatGLM2-6B
pip install -r requirements.txt
python cli_demo.py
本地部署后运行 cli_demo.py
,就会看到下面的原始界面
可以通过以下命令启动基于 Gradio 的网页版 demo:
python web_demo.py
也可以通过以下命令启动基于 Streamlit 的网页版 demo:
streamlit run web_demo2.py
推理参数设置:
默认情况下,会从huggingface自动下载模型权重,例如:
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
>>> model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True, device='cuda')
>>> model = model.eval()
>>> response, history = model.chat(tokenizer, "你好", history=[])
>>> print(response)
你好声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/81483
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。