当前位置:   article > 正文

Pytorch的学习——U-Net语义分割_unet语义分割多分类代码

unet语义分割多分类代码

U-Net

UNet是通过自编码的形式实现物体的分类与预测,其主体由一个编码器与一个解码器组成,结构如下图。
在这里插入图片描述
该网络先对维度为(3,H,W)的图像进行4次下采样,再进行上采样,用之前的低层特征图,与上采样后的特征图进行融合,重复上采样和融合过程直到得到与输入图像尺寸相同的分割图,输出结果图的维度为(1,H,W),最后通过sigmoid()函数将数值化为(0,1)区间,得到输出图。

模型代码
import torch.nn as nn
import torch


class DoubleConv(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(DoubleConv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_ch, out_ch, 3, padding=1),  # in_ch、out_ch是通道数
            nn.BatchNorm2d(out_ch),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_ch, out_ch, 3, padding=1),
            nn.BatchNorm2d(out_ch),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        return self.conv(x)


class UNet(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(UNet, self).__init__()
        # 编码器
        self.conv1 = DoubleConv(in_ch, 64)
        self.pool1 = nn.MaxPool2d(2)  # 池化,每次把图像尺寸缩小一半
        self.conv2 = DoubleConv(64, 128)
        self.pool2 = nn.MaxPool2d(2)
        self.conv3 = DoubleConv(128, 256)
        self.pool3 = nn.MaxPool2d(2)
        self.conv4 = DoubleConv(256, 512)
        self.pool4 = nn.MaxPool2d(2)
        self.conv5 = DoubleConv(512, 1024)
        # 解码器
        self.up6 = nn.ConvTranspose2d(1024, 512, 2, stride=2)
        self.conv6 = DoubleConv(1024, 512)
        self.up7 = nn.ConvTranspose2d(512, 256, 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/87822
推荐阅读
相关标签
  

闽ICP备14008679号