赞
踩
这里想说一个问题呀,初学东西还是应该首先看认可度高的书或者官方文档,至少要知道他们所用方法的思想是什么,不要动不动就上博客知乎,尤其csdn对于我是一个初学记录与分享平台,相信很多朋友和我一样,但是初学记录的东西不一定正确、全面或者方法不是最佳的,很可能误导小白。自己不爱看书做事急躁,科研习惯差,完全是这种坏习惯的受害者,还是应该在知道经典方法的前提下根据实际情况应用自己的方法
最近又有一个活:对我们自己设计的机械臂进行逆运动学推导( 这次是修正DH )
附上一个我认为的修正DH最强表述,来自B站台湾大学林沛群老师课程
对于修正DH
正运动学:
利用符号运算计算 Transformation Matrix
import sympy as sym from sympy import sin,cos import math from sympy.matrices import Matrix pi=math.pi #DH参数 a=[0,0,280,100,0,0] alpha=[0,-pi/2 ,0,pi/2,-pi/2 ,pi/2] d=[210,0,0,-220,0,180] theta = sym.symbols('theta') for i in range(6): cos_alpha=round(cos(alpha[i]), 4) sin_alpha=round(sin(alpha[i]), 4) theta = sym.symbols('theta'+chr(i+49)) #除0外,di暂时用符号来表示 if a[i]==0: ai=0 else: a_i='a'+chr(i+49) ai = sym.symbols(a_i) if d[i]==0: di=0 else: d_i='d'+chr(i+49) di = sym.symbols(d_i) T1=cos(theta) T2=-sin(theta) T3=0 T4=ai T5=sin(theta)*cos_alpha T6=cos(theta)*cos_alpha T7=-sin_alpha T8=-sin_alpha*di T9=sin(theta)*sin_alpha T10=cos(theta)*sin_alpha T11=cos_alpha T12=cos_alpha*di T13=0 T14=0 T15=0 T16=1 m=Matrix([[T1,T2,T3,T4],[T5,T6,T7,T8],[T9,T10,T11,T12],[T3,T14,T15,T16]]) print('\n') print(sym.latex(m)) print('\n')
1
0
T
=
[
cos
(
θ
1
)
−
sin
(
θ
1
)
0
0
sin
(
θ
1
)
cos
(
θ
1
)
0
0
0
0
1
d
1
0
0
0
1
]
^{0}_1T=\left[
2
1
T
=
[
cos
(
θ
2
)
−
sin
(
θ
2
)
0
0
0
0
1.0
0
−
1.0
sin
(
θ
2
)
−
1.0
cos
(
θ
2
)
0
0
0
0
0
1
]
^{1}_2T=\left[
3
2
T
=
[
cos
(
θ
3
)
−
sin
(
θ
3
)
0
a
3
sin
(
θ
3
)
cos
(
θ
3
)
0
0
0
0
1
0
0
0
0
1
]
^{2}_3T=\left[
4
3
T
=
[
cos
(
θ
4
)
−
sin
(
θ
4
)
0
a
4
0
0
−
1.0
−
1.0
d
4
1.0
sin
(
θ
4
)
1.0
cos
(
θ
4
)
0
0
0
0
0
1
]
^{3}_4T=\left[
5
4
T
=
[
cos
(
θ
5
)
−
sin
(
θ
5
)
0
0
0
0
1.0
0
−
1.0
sin
(
θ
5
)
−
1.0
cos
(
θ
5
)
0
0
0
0
0
1
]
^{4}_5T=\left[
6
5
T
=
[
cos
(
θ
6
)
−
sin
(
θ
6
)
0
0
0
0
−
1.0
−
1.0
d
6
1.0
sin
(
θ
6
)
1.0
cos
(
θ
6
)
0
0
0
0
0
1
]
^{5}_6T=\left[
T
=
1
0
T
2
1
T
3
2
T
4
3
T
5
4
T
6
5
T
=
T=^{0}_1T^{1}_2T^{2}_3T^{3}_4T^{4}_5T^{5}_6T=
T=10T21T32T43T54T65T=
[
n
x
o
x
a
x
p
x
n
y
o
y
a
y
p
y
n
z
o
z
a
z
p
z
0
0
0
1
]
旋转矩阵连乘后的矩阵取每个元素:
for i in range(4):
for j in range(4):
print('\n')
print(i,j)
print('\n')
print(sym.latex(sym.simplify(m[i,j])))
(这里不知道simplfy是不是最简)得到:
n x = − ( ( 1.0 sin ( θ 1 ) sin ( θ 4 ) − cos ( θ 1 ) cos ( θ 4 ) cos ( θ 2 + θ 3 ) ) cos ( θ 5 ) + 1.0 sin ( θ 5 ) sin ( θ 2 + θ 3 ) cos ( θ 1 ) ) cos ( θ 6 ) − 1.0 ( sin ( θ 1 ) cos ( θ 4 ) + sin ( θ 4 ) cos ( θ 1 ) cos ( θ 2 + θ 3 ) ) sin ( θ 6 ) n_x=- \left(\left(1.0 \sin{\left(\theta_{1} \right)} \sin{\left(\theta_{4} \right)} - \cos{\left(\theta_{1} \right)} \cos{\left(\theta_{4} \right)} \cos{\left(\theta_{2} + \theta_{3} \right)}\right) \cos{\left(\theta_{5} \right)} + 1.0 \sin{\left(\theta_{5} \right)} \sin{\left(\theta_{2} + \theta_{3} \right)} \cos{\left(\theta_{1} \right)}\right) \cos{\left(\theta_{6} \right)} - 1.0 \left(\sin{\left(\theta_{1} \right)} \cos{\left(\theta_{4} \right)} + \sin{\left(\theta_{4} \right)} \cos{\left(\theta_{1} \right)} \cos{\left(\theta_{2} + \theta_{3} \right)}\right) \sin{\left(\theta_{6} \right)} nx=−((1.0sin(θ1)sin(θ4)−cos(θ1)cos(θ4)cos(θ2+θ3))cos(θ5)+1.0sin(θ5)sin(θ2+θ3)cos(θ1))cos(θ6)−1.0(sin(θ1)cos(θ4)+sin(θ4)cos(θ1)cos(θ2+θ3))sin(θ6)
o x = ( ( 1.0 sin ( θ 1 ) sin ( θ 4 ) − cos ( θ 1 ) cos ( θ 4 ) cos ( θ 2 + θ 3 ) ) cos ( θ 5 ) + 1.0 sin ( θ 5 ) sin ( θ 2 + θ 3 ) cos ( θ 1 ) ) sin ( θ 6 ) − 1.0 ( sin ( θ 1 ) cos ( θ 4 ) + sin ( θ 4 ) cos ( θ 1 ) cos ( θ 2 + θ 3 ) ) cos ( θ 6 ) o_x=\left(\left(1.0 \sin{\left(\theta_{1} \right)} \sin{\left(\theta_{4} \right)} - \cos{\left(\theta_{1} \right)} \cos{\left(\theta_{4} \right)} \cos{\left(\theta_{2} + \theta_{3} \right)}\right) \cos{\left(\theta_{5} \right)} + 1.0 \sin{\left(\theta_{5} \right)} \sin{\left(\theta_{2} + \theta_{3} \right)} \cos{\left(\theta_{1} \right)}\right) \sin{\left(\theta_{6} \right)} - 1.0 \left(\sin{\left(\theta_{1} \right)} \cos{\left(\theta_{4} \right)} + \sin{\left(\theta_{4} \right)} \cos{\left(\theta_{1} \right)} \cos{\left(\theta_{2} + \theta_{3} \right)}\right) \cos{\left(\theta_{6} \right)} ox=((1.0sin(θ1)sin(θ4)−cos(θ1)cos(θ4)cos(θ2+θ3))cos(θ5)+1.0sin(θ5)sin(θ2+θ3)cos(θ1))sin(θ6)−1.0(sin(θ1)cos(θ4)+sin(θ4)cos(θ1)cos(θ2+θ3))cos(θ6)
a x = − 1.0 ⋅ ( 1.0 sin ( θ 1 ) sin ( θ 4 ) − cos ( θ 1 ) cos ( θ 4 ) cos ( θ 2 + θ 3 ) ) sin ( θ 5 ) + 1.0 sin ( θ 2 + θ 3 ) cos ( θ 1 ) cos ( θ 5 ) a_x=- 1.0 \cdot \left(1.0 \sin{\left(\theta_{1} \right)} \sin{\left(\theta_{4} \right)} - \cos{\left(\theta_{1} \right)} \cos{\left(\theta_{4} \right)} \cos{\left(\theta_{2} + \theta_{3} \right)}\right) \sin{\left(\theta_{5} \right)} + 1.0 \sin{\left(\theta_{2} + \theta_{3} \right)} \cos{\left(\theta_{1} \right)} \cos{\left(\theta_{5} \right)} ax=−1.0⋅(1.0sin(θ1)sin(θ4)−cos(θ1)cos(θ4)cos(θ2+θ3))sin(θ5)+1.0sin(θ2+θ3)cos(θ1)cos(θ5)
n y = 1.0 ( ( sin ( θ 1 ) cos ( θ 4 ) cos ( θ 2 + θ 3 ) + sin ( θ 4 ) cos ( θ 1 ) ) cos ( θ 5 ) − sin ( θ 1 ) sin ( θ 5 ) sin ( θ 2 + θ 3 ) ) cos ( θ 6 ) − 1.0 ( sin ( θ 1 ) sin ( θ 4 ) cos ( θ 2 + θ 3 ) − cos ( θ 1 ) cos ( θ 4 ) ) sin ( θ 6 ) n_y=1.0 \left(\left(\sin{\left(\theta_{1} \right)} \cos{\left(\theta_{4} \right)} \cos{\left(\theta_{2} + \theta_{3} \right)} + \sin{\left(\theta_{4} \right)} \cos{\left(\theta_{1} \right)}\right) \cos{\left(\theta_{5} \right)} - \sin{\left(\theta_{1} \right)} \sin{\left(\theta_{5} \right)} \sin{\left(\theta_{2} + \theta_{3} \right)}\right) \cos{\left(\theta_{6} \right)} - 1.0 \left(\sin{\left(\theta_{1} \right)} \sin{\left(\theta_{4} \right)} \cos{\left(\theta_{2} + \theta_{3} \right)} - \cos{\left(\theta_{1} \right)} \cos{\left(\theta_{4} \right)}\right) \sin{\left(\theta_{6} \right)} ny=1.0((sin(θ1)cos(θ4)cos(θ2+θ3)+sin(θ4)cos(θ1))cos(θ5)−sin(θ1)sin(θ5)sin(θ2+θ3))cos(θ6)−1.0(sin(θ1)sin(θ4)cos(θ2+θ3)−cos(θ1)cos(θ4))sin(θ6)
o y = 1.0 ( − ( sin ( θ 1 ) cos ( θ 4 ) cos ( θ 2 + θ 3 ) + sin ( θ 4 ) cos ( θ 1 ) ) cos ( θ 5 ) + sin ( θ 1 ) sin ( θ 5 ) sin ( θ 2 + θ 3 ) ) sin ( θ 6 ) + 1.0 ( − sin ( θ 1 ) sin ( θ 4 ) cos ( θ 2 + θ 3 ) + cos ( θ 1 ) cos ( θ 4 ) ) cos ( θ 6 ) o_y=1.0 \left(- \left(\sin{\left(\theta_{1} \right)} \cos{\left(\theta_{4} \right)} \cos{\left(\theta_{2} + \theta_{3} \right)} + \sin{\left(\theta_{4} \right)} \cos{\left(\theta_{1} \right)}\right) \cos{\left(\theta_{5} \right)} + \sin{\left(\theta_{1} \right)} \sin{\left(\theta_{5} \right)} \sin{\left(\theta_{2} + \theta_{3} \right)}\right) \sin{\left(\theta_{6} \right)} + 1.0 \left(- \sin{\left(\theta_{1} \right)} \sin{\left(\theta_{4} \right)} \cos{\left(\theta_{2} + \theta_{3} \right)} + \cos{\left(\theta_{1} \right)} \cos{\left(\theta_{4} \right)}\right) \cos{\left(\theta_{6} \right)} oy=1.0(−(sin(θ1)cos(θ4)cos(θ2+θ3)+sin(θ4)cos(θ1))cos(θ5)+sin(θ1)sin(θ5)sin(θ2+θ3))sin(θ6)+1.0(−sin(θ1)sin(θ4)cos(θ2+θ3)+cos(θ1)cos(θ4))cos(θ6)
a y = 1.0 ( sin ( θ 1 ) cos ( θ 4 ) cos ( θ 2 + θ 3 ) + sin ( θ 4 ) cos ( θ 1 ) ) sin ( θ 5 ) + 1.0 sin ( θ 1 ) sin ( θ 2 + θ 3 ) cos ( θ 5 ) a_y=1.0 \left(\sin{\left(\theta_{1} \right)} \cos{\left(\theta_{4} \right)} \cos{\left(\theta_{2} + \theta_{3} \right)} + \sin{\left(\theta_{4} \right)} \cos{\left(\theta_{1} \right)}\right) \sin{\left(\theta_{5} \right)} + 1.0 \sin{\left(\theta_{1} \right)} \sin{\left(\theta_{2} + \theta_{3} \right)} \cos{\left(\theta_{5} \right)} ay=1.0(sin(θ1)cos(θ4)cos(θ2+θ3)+sin(θ4)cos(θ1))sin(θ5)+1.0sin(θ1)sin(θ2+θ3)cos(θ5)
n z = − 1.0 ( sin ( θ 5 ) cos ( θ 2 + θ 3 ) + sin ( θ 2 + θ 3 ) cos ( θ 4 ) cos ( θ 5 ) ) cos ( θ 6 ) + 1.0 sin ( θ 4 ) sin ( θ 6 ) sin ( θ 2 + θ 3 ) n_z=- 1.0 \left(\sin{\left(\theta_{5} \right)} \cos{\left(\theta_{2} + \theta_{3} \right)} + \sin{\left(\theta_{2} + \theta_{3} \right)} \cos{\left(\theta_{4} \right)} \cos{\left(\theta_{5} \right)}\right) \cos{\left(\theta_{6} \right)} + 1.0 \sin{\left(\theta_{4} \right)} \sin{\left(\theta_{6} \right)} \sin{\left(\theta_{2} + \theta_{3} \right)} nz=−1.0(sin(θ5)cos(θ2+θ3)+sin(θ2+θ3)cos(θ4)cos(θ5))cos(θ6)+1.0sin(θ4)sin(θ6)sin(θ2+θ3)
o z = 1.0 ( sin ( θ 5 ) cos ( θ 2 + θ 3 ) + sin ( θ 2 + θ 3 ) cos ( θ 4 ) cos ( θ 5 ) ) sin ( θ 6 ) + 1.0 sin ( θ 4 ) sin ( θ 2 + θ 3 ) cos ( θ 6 ) o_z=1.0 \left(\sin{\left(\theta_{5} \right)} \cos{\left(\theta_{2} + \theta_{3} \right)} + \sin{\left(\theta_{2} + \theta_{3} \right)} \cos{\left(\theta_{4} \right)} \cos{\left(\theta_{5} \right)}\right) \sin{\left(\theta_{6} \right)} + 1.0 \sin{\left(\theta_{4} \right)} \sin{\left(\theta_{2} + \theta_{3} \right)} \cos{\left(\theta_{6} \right)} oz=1.0(sin(θ5)cos(θ2+θ3)+sin(θ2+θ3)cos(θ4)cos(θ5))sin(θ6)+1.0sin(θ4)sin(θ2+θ3)cos(θ6)
a z = − 1.0 sin ( θ 5 ) sin ( θ 2 + θ 3 ) cos ( θ 4 ) + 1.0 cos ( θ 5 ) cos ( θ 2 + θ 3 ) a_z=- 1.0 \sin{\left(\theta_{5} \right)} \sin{\left(\theta_{2} + \theta_{3} \right)} \cos{\left(\theta_{4} \right)} + 1.0 \cos{\left(\theta_{5} \right)} \cos{\left(\theta_{2} + \theta_{3} \right)} az=−1.0sin(θ5)sin(θ2+θ3)cos(θ4)+1.0cos(θ5)cos(θ2+θ3)
p x = a 3 cos ( θ 1 ) cos ( θ 2 ) + a 4 cos ( θ 1 ) cos ( θ 2 + θ 3 ) + 1.0 d 4 sin ( θ 2 + θ 3 ) cos ( θ 1 ) − 1.0 d 6 ( ( 1.0 sin ( θ 1 ) sin ( θ 4 ) − cos ( θ 1 ) cos ( θ 4 ) cos ( θ 2 + θ 3 ) ) sin ( θ 5 ) − 1.0 sin ( θ 2 + θ 3 ) cos ( θ 1 ) cos ( θ 5 ) ) p_x=a_{3} \cos{\left(\theta_{1} \right)} \cos{\left(\theta_{2} \right)} + a_{4} \cos{\left(\theta_{1} \right)} \cos{\left(\theta_{2} + \theta_{3} \right)} + 1.0 d_{4} \sin{\left(\theta_{2} + \theta_{3} \right)} \cos{\left(\theta_{1} \right)} - 1.0 d_{6} \left(\left(1.0 \sin{\left(\theta_{1} \right)} \sin{\left(\theta_{4} \right)} - \cos{\left(\theta_{1} \right)} \cos{\left(\theta_{4} \right)} \cos{\left(\theta_{2} + \theta_{3} \right)}\right) \sin{\left(\theta_{5} \right)} - 1.0 \sin{\left(\theta_{2} + \theta_{3} \right)} \cos{\left(\theta_{1} \right)} \cos{\left(\theta_{5} \right)}\right) px=a3cos(θ1)cos(θ2)+a4cos(θ1)cos(θ2+θ3)+1.0d4sin(θ2+θ3)cos(θ1)−1.0d6((1.0sin(θ1)sin(θ4)−cos(θ1)cos(θ4)cos(θ2+θ3))sin(θ5)−1.0sin(θ2+θ3)cos(θ1)cos(θ5))
p y = a 3 sin ( θ 1 ) cos ( θ 2 ) + a 4 sin ( θ 1 ) cos ( θ 2 + θ 3 ) + 1.0 d 4 sin ( θ 1 ) sin ( θ 2 + θ 3 ) + 1.0 d 6 ( ( sin ( θ 1 ) cos ( θ 4 ) cos ( θ 2 + θ 3 ) + sin ( θ 4 ) cos ( θ 1 ) ) sin ( θ 5 ) + sin ( θ 1 ) sin ( θ 2 + θ 3 ) cos ( θ 5 ) ) p_y=a_{3} \sin{\left(\theta_{1} \right)} \cos{\left(\theta_{2} \right)} + a_{4} \sin{\left(\theta_{1} \right)} \cos{\left(\theta_{2} + \theta_{3} \right)} + 1.0 d_{4} \sin{\left(\theta_{1} \right)} \sin{\left(\theta_{2} + \theta_{3} \right)} + 1.0 d_{6} \left(\left(\sin{\left(\theta_{1} \right)} \cos{\left(\theta_{4} \right)} \cos{\left(\theta_{2} + \theta_{3} \right)} + \sin{\left(\theta_{4} \right)} \cos{\left(\theta_{1} \right)}\right) \sin{\left(\theta_{5} \right)} + \sin{\left(\theta_{1} \right)} \sin{\left(\theta_{2} + \theta_{3} \right)} \cos{\left(\theta_{5} \right)}\right) py=a3sin(θ1)cos(θ2)+a4sin(θ1)cos(θ2+θ3)+1.0d4sin(θ1)sin(θ2+θ3)+1.0d6((sin(θ1)cos(θ4)cos(θ2+θ3)+sin(θ4)cos(θ1))sin(θ5)+sin(θ1)sin(θ2+θ3)cos(θ5))
p z = − 1.0 a 3 sin ( θ 2 ) − 1.0 a 4 sin ( θ 2 + θ 3 ) + 1.0 d 1 + 1.0 d 4 cos ( θ 2 + θ 3 ) − 1.0 d 6 sin ( θ 5 ) sin ( θ 2 + θ 3 ) cos ( θ 4 ) + 1.0 d 6 cos ( θ 5 ) cos ( θ 2 + θ 3 ) p_z=- 1.0 a_{3} \sin{\left(\theta_{2} \right)} - 1.0 a_{4} \sin{\left(\theta_{2} + \theta_{3} \right)} + 1.0 d_{1} + 1.0 d_{4} \cos{\left(\theta_{2} + \theta_{3} \right)} - 1.0 d_{6} \sin{\left(\theta_{5} \right)} \sin{\left(\theta_{2} + \theta_{3} \right)} \cos{\left(\theta_{4} \right)} + 1.0 d_{6} \cos{\left(\theta_{5} \right)} \cos{\left(\theta_{2} + \theta_{3} \right)} pz=−1.0a3sin(θ2)−1.0a4sin(θ2+θ3)+1.0d1+1.0d4cos(θ2+θ3)−1.0d6sin(θ5)sin(θ2+θ3)cos(θ4)+1.0d6cos(θ5)cos(θ2+θ3)
我们由末端位置与(ZYZ)姿态欧拉角和旋转矩阵的关系求解正运动学
T
=
[
c
α
c
β
c
γ
−
s
α
s
γ
−
c
α
c
β
s
γ
−
s
α
c
γ
c
α
s
β
p
x
s
α
c
β
c
γ
+
c
α
s
γ
−
s
α
c
β
c
γ
+
c
α
c
γ
s
α
s
β
p
y
−
s
β
c
γ
s
β
s
γ
c
β
p
z
0
0
0
1
]
T=
角度求解
θ
1
\theta_1
θ1:
由:
1 0 T − 1 T = 2 1 T 3 2 T 4 3 T 5 4 T 6 5 T ^{0}_1T^{-1}T=^{1}_2T ^{2}_3T^{3}_4T^{4}_5T^{5}_6T 10T−1T=21T32T43T54T65T
=
[
n
x
c
1
+
n
y
s
1
o
x
c
1
+
o
y
s
1
a
x
c
1
+
a
y
s
1
p
x
c
1
+
p
y
s
1
−
n
x
s
1
+
n
y
c
1
−
o
x
s
1
+
o
y
c
1
−
a
x
s
1
+
a
y
c
1
−
p
x
s
1
+
p
y
c
1
n
z
o
z
a
z
−
d
1
+
p
z
0
0
0
1
]
=
=
[
s
5
c
6
s
23
−
c
4
c
5
c
6
c
23
−
s
4
s
6
c
23
s
5
s
6
s
23
−
c
4
c
5
s
6
c
23
−
s
4
c
6
c
23
s
5
c
4
c
23
+
s
23
c
5
a
3
c
2
+
a
4
c
23
+
d
4
s
23
+
d
6
s
5
c
4
c
23
+
d
6
s
23
c
5
s
4
c
5
c
6
+
s
6
c
4
s
4
c
5
s
6
+
c
6
c
4
s
4
s
5
d
6
s
4
s
5
s
5
c
6
c
23
+
c
4
c
5
c
6
s
23
+
s
4
s
6
s
23
s
5
s
6
c
23
+
c
4
c
5
s
6
s
23
+
s
4
c
6
s
23
s
5
c
4
s
23
+
c
5
c
23
a
3
s
2
−
a
4
s
23
+
d
4
c
23
−
d
6
s
5
c
4
s
23
+
d
6
c
5
c
23
0
0
0
1
]
得:
d 6 ( − a x s 1 + a y c 1 ) = − p x s 1 + p y c 1 d_6(-a_xs_1+a_yc_1)=-p_xs_1+p_yc_1 d6(−axs1+ayc1)=−pxs1+pyc1
( − a x d 6 + p x ) s 1 − ( p y − d 6 a y ) c 1 = 0 (-a_xd_6+p_x)s_1-(p_y-d_6a_y)c_1=0 (−axd6+px)s1−(py−d6ay)c1=0
总能找到一个分母 m m m
s
i
n
ϕ
=
−
a
x
d
6
+
p
x
m
,
c
o
s
ϕ
=
p
y
−
d
6
a
y
m
sin{\phi}=\frac{-a_xd_6+p_x}{m},cos{\phi}=\frac{p_y-d_6a_y}{m}
sinϕ=m−axd6+px,cosϕ=mpy−d6ay
s
i
n
(
θ
1
−
ϕ
)
=
0
sin(\theta_1-\phi)=0
sin(θ1−ϕ)=0
c
o
s
(
θ
1
−
ϕ
)
=
±
1
cos(\theta_1-\phi)=±1
cos(θ1−ϕ)=±1
θ
1
=
a
t
a
n
2
(
s
i
n
(
ϕ
)
,
c
o
s
(
ϕ
)
)
+
a
t
a
n
2
(
0
,
±
1
)
\theta_1=atan2(sin({\phi}),cos(\phi))+atan2(0,±1)
θ1=atan2(sin(ϕ),cos(ϕ))+atan2(0,±1)
角度求解 θ 2 \theta_2 θ2:
…
同理求解
θ
3
、
θ
4
.
.
.
.
.
.
.
θ
6
\theta_3、\theta_4.......\theta_6
θ3、θ4.......θ6
通用的代码的应用就到这里,感兴趣的同学可以尝试继续用smypy解出 θ \theta θ
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。