当前位置:   article > 正文

Attention-Guided Version of 2D UNet for Automatic Brain Tumor Segmentation

Attention-Guided Version of 2D UNet for Automatic Brain Tumor Segmentation

tf2模型代码:

  1. import tensorflow.keras.backend as K
  2. from tensorflow.keras.models import Model
  3. from tensorflow.keras import Input
  4. from tensorflow.keras.layers import Conv2D, PReLU, UpSampling2D, concatenate , Reshape, Dense, Permute, MaxPool2D
  5. from tensorflow.keras.layers import GlobalAveragePooling2D, Activation, add, GaussianNoise, BatchNormalization, multiply
  6. from tensorflow.keras.optimizers import SGD
  7. from loss import custom_loss
  8. K.set_image_data_format("channels_last")
  9. def unet_model(input_shape, modified_unet=True, learning_rate=0.01, start_channel=64,
  10. number_of_levels=3, inc_rate=2, output_channels=4, saved_model_dir=None):
  11. """
  12. Builds UNet model
  13. Parameters
  14. ----------
  15. input_shape : tuple
  16. Shape of the input data (height, width, channel)
  17. modified_unet : bool
  18. Whether to use modified UNet or the original UNet
  19. learning_rate : float
  20. Learning rat
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/97930
推荐阅读
相关标签
  

闽ICP备14008679号