赞
踩
先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
在机器学习-01中,我们介绍了关于机器学习的一般建模流程,并且在基本没有数学公式和代码的情况下,简单介绍了关于线性回归的一般实现形式。不过这只是在初学阶段、为了不增加基础概念理解难度所采取的方法,但所有的技术最终都是为了解决实际问题的,因此,接下来,我们就在之前的基础上更进一步,从一个更加严谨的理论体系出发、来尝试进行一种更加贴合实际应用所采用的一般方法的建模方法的学习。
import numpy as np
import pandas as pd
在进入到本节正式内容之前,我们需要先补充一些矩阵相关基础概念,以及矩阵运算的基本方法。
在机器学习基础阶段,需要掌握的矩阵及线性代数基本理论包括:
在NumPy中,二维数组(array)和matrix类型对象都可以用于表示矩阵,并且也都具备矩阵的代数学方法。
A = np.array([[1, 2], [1, 1]])
A
array([[1, 2],
[1, 1]])
type(A)
numpy.ndarray
AM = np.mat(A)
AM
matrix([[1, 2],
[1, 1]])
type(AM)
numpy.matrix
关于两种对象类型的选取,此处进行简单说明:
AM \* AM
matrix([[3, 4],
[2, 3]])
A.dot(A)
array([[3, 4],
[2, 3]])
# 新版NumPy也支持使用符号进行矩阵乘法
A @ A
array([[3, 4],
[2, 3]])
为了执行更高效的计算、以及确保代码整体基本对象类型统一,课程如无说明,将统一使用二维数组表示矩阵。
在实际线性代数运算过程中,经常涉及一些特殊矩阵,如单位矩阵、对角矩阵等,相关创建方法如下:
函数 | 描述 |
---|---|
a.T | 数组a转置 |
np.eye(n) | 创建包含n个分量的单位矩阵 |
np.diag(a1) | 以a1中各元素,创建对角矩阵 |
np.triu(a) | 取矩阵a中的上三角矩阵 |
np.tril(a) | 取矩阵a中的下三角矩阵 |
下面将展示一些矩阵的基本操作:
# 创建一个2\*3的矩阵
a1 = np.arange(1, 7).reshape(2, 3)
a1
array([[1, 2, 3],
[4, 5, 6]])
# 转置
a1.T
array([[1, 4],
[2, 5],
[3, 6]])
矩阵的转置就是每个元素行列位置互换
# 创建单位矩阵
np.eye(3)
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
单位矩阵之所以被称为“单位”,核心原因在于单位矩阵和任何矩阵相乘,都将返回原矩阵。
a = np.arange(5) a array([0, 1, 2, 3, 4]) np.diag(a) array([[0, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 2, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 4]]) # 对角线向上偏移一位 np.diag(a, 1) array([[0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 2, 0, 0], [0, 0, 0, 0, 3, 0], [0, 0, 0, 0, 0, 4], [0, 0, 0, 0, 0, 0]]) # 对角线向下偏移一位 np.diag(a, -1) array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 2, 0, 0, 0], [0, 0, 0, 3, 0, 0], [0, 0, 0, 0, 4, 0]]) a1 = np.arange(9).reshape(3, 3) a1 array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) # 取上三角矩阵 np.triu(a1) array([[0, 1, 2], [0, 4, 5], [0, 0, 8]]) # 上三角矩阵向左下偏移一位 np.triu(a1, -1) array([[0, 1, 2], [3, 4, 5], [0, 7, 8]]) # 上三角矩阵向右上偏移一位 np.triu(a1, 1) array([[0, 1, 2], [0, 0, 5], [0, 0, 0]]) # 下三角矩阵 np.tril(a1) array([[0, 0, 0], [3, 4, 0], [6, 7, 8]])
由于NumPy中我们使用二维数组来表述矩阵,因此二维数组也就具备了数组和矩阵的两重属性。其中数组属性决定的基本运算相对简单,基础运算(如加减乘除)就是对应位置元素进行逐元素计算,而矩阵属性决定的运算则稍显复杂,当然矩阵的相关线性代数运算将在下一小节讨论,在基础运算上,矩阵和数组核心的区别在于乘法运算。
当然,从另一个角度考虑,其实对于向量和矩阵这种具备一定结构的对象,有很多种容易混淆的计算规则。对于常用的计算规则,我们通过将其划分成三类以帮助大家理解:
描述 | 解释/函数 |
---|---|
逐元素相乘 | 向量、矩阵通用 |
每个对应位置元素相乘 | * |
逐元素相乘后相加 | 也被称为点积(内积),向量,矩阵通用 |
向量点积 | vdot、dot、inner |
矩阵点积 | vdot |
矩阵乘法 | 代数学意义的矩阵相乘 |
矩阵乘法 | dot、matmul、@ |
a = np.arange(4) a array([0, 1, 2, 3]) a \* a array([0, 1, 4, 9]) A = a.reshape(2, 2) A array([[0, 1], [2, 3]]) A \* A array([[0, 1], [4, 9]])
np.dot(a, a)
14
a.dot(a)
14
(a \* a).sum()
14
np.vdot(a, a)
14
np.inner(a, a)
14
A
array([[0, 1],
[2, 3]])
np.vdot(A, A)
14
(A \* A).sum()
14
注意,高维数组的inner并不是内积,而是一种类似tensordot的沿着尾轴实现和积的计算过程,该方法并不通用,此处暂不做介绍。
a1 = np.arange(1, 7).reshape(2, 3) a1 array([[1, 2, 3], [4, 5, 6]]) a2 = np.arange(1, 10).reshape(3, 3) a2 array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # 矩阵乘法 np.matmul(a1, a2) array([[30, 36, 42], [66, 81, 96]])
此处也简单回顾矩阵乘法运算,上述相乘过程如下所示:
值得注意的是,矩阵相乘要求左乘矩阵列数和右乘矩阵行数相同,而内积计算过程则严格要求两个向量/矩阵形状完全一致。
如果说矩阵的基本运算是矩阵基本性质,那么矩阵的线性代数运算,则是我们利用矩阵数据类型在求解实际问题过程中经常涉及到的线性代数方法,具体相关函数如下:
矩阵的线性代数运算
函数 | 描述 |
---|---|
np.trace(A) | 矩阵的迹 |
np.linalg.matrix_rank(A) | 矩阵的秩 |
np.linalg…det(A) | 计算矩阵A的行列式 |
np.linalg.inv(A) | 矩阵求逆 |
同时,由于线性代数所涉及的数学基础知识较多,从实际应用的角度出发,我们将有所侧重的介绍实际应用过程中需要掌握的相关内容,并通过本节末尾的实际案例,来加深线性代数相关内容的理解。
NumPy中的linalg是linear algebra(线性代数)的简写,也是NumPy中保存线性代数相关计算函数的模块。
矩阵的迹的运算相对简单,就是矩阵对角线元素之和,在NumPy中,可以使用trace函数进行计算。
A = np.array([[1, 2], [4, 5]])
A
array([[1, 2],
[4, 5]])
np.trace(A)
6
当然,对于矩阵的迹来说,计算过程不需要是方正
B = np.arange(1, 7).reshape(2, 3)
B
array([[1, 2, 3],
[4, 5, 6]])
np.trace(B)
6
所谓线性相关,其实也就是线性表示,如果
y
=
w
x
b
y=wx+b
y=wx+b,我们则称y可以由x线性表示,二者线性相关,反之则线性无关。类似,如果
y
现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。
分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。
分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
[外链图片转存中…(img-qo6umLpN-1713218311377)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。