赞
踩
'''Trains and evaluate a simple MLP on the Reuters newswire topic classification task. ''' from __future__ import print_function import numpy as np np.random.seed(1337) # for reproducibility from keras.datasets import reuters from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.utils import np_utils from keras.preprocessing.text import Tokenizer max_words = 1000 # vocab大小 batch_size = 32 # mini_batch_size nb_epoch = 5 # 大循环次数 print('Loading data...') (X_train, y_train), (X_test, y_test) = reuters.load_data(nb_words=max_words, test_split=0.2) # 载入路透社语料<br>#打印 print(len(X_train), 'train sequences') print(len(X_test), 'test sequences') # 分类数目--原版路透社我记着是10来着,应该是语料用的是大的那个 nb_classes = np.max(y_train) + 1 print(nb_classes, 'classes') print('Vectorizing sequence data...') # tokenize tokenizer = Tokenizer(nb_words=max_words) # 序列化,取df前1000大<br>#这里有个非常好玩的事, X_train 里面初始存的是wordindex,wordindex是按照词大小来的(应该是,因为直接就给撇了)<br>#所以这个效率上还是很高的<br>#转化的还是binary,默认不是用tfidf X_train = tokenizer.sequences_to_matrix(X_train, mode='binary') X_test = tokenizer.sequences_to_matrix(X_test, mode='binary') print('X_train shape:', X_train.shape) print('X_test shape:', X_test.shape) print('Convert class vector to binary class matrix (for use with categorical_crossentropy)') # 这个就好理解多了, 编码而已 Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) print('Y_train shape:', Y_train.shape) print('Y_test shape:', Y_test.shape) print('Building model...') model = Sequential() # 第一层<br>#Dense就是全连接层 model.add(Dense(512, input_shape=(max_words,))) # 输入维度, 512==输出维度 model.add(Activation('relu')) # 激活函数 model.add(Dropout(0.5)) # dropout<br><br>#第二层 model.add(Dense(nb_classes)) model.add(Activation('softmax')) # 损失函数设置、优化函数,衡量标准 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练,交叉验证 history = model.fit(X_train, Y_train, nb_epoch=nb_epoch, batch_size=batch_size, verbose=1, validation_split=0.1) score = model.evaluate(X_test, Y_test, batch_size=batch_size, verbose=1) print('Test score:', score[0]) print('Test accuracy:', score[1])
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。