赞
踩
在实际处理过程中,我们使用YOLO V8进行推理时,通常会针对一张图片进行推理。如果需要对多张图片进行推理,则可以通过一个循环来实现对图片逐张进行推理。
单张图片推理时,需要注意图片的尺寸必须是32的倍数,否则可能导致推理失败。在下面的示例中,我们展示了如何使用PyTorch和Ultralytics库进行单张图片的推理:
- import torch
- from ultralytics import YOLO
-
- # Load a pretrained YOLOv8n model
- model = YOLO('yolov8n.pt')
-
- # Create a random torch tensor of BCHW shape (1, 3, 640, 640) with values in range [0, 1] and type float32
- source = torch.rand(1, 3, 640, 640, dtype=torch.float32)
-
- # Run inference on the source
- results = model(source) # list of Results objects
批量图片推理时,也需要注意图片的尺寸必须是32的倍数。在下面的示例中,我们展示了如何使用PyTorch和Ultralytics库进行多张图片的批量推理:
- import torch
- from ultralytics import YOLO
-
- # Load a pretrained YOLOv8n model
- model = YOLO('yolov8n.pt')
-
- # Create a random torch tensor of BCHW shape (1, 3, 640, 640) with values in range [0, 1] and type float32
- source = torch.rand(4, 3, 640, 640, dtype=torch.float32)
-
- # Run inference on the source
- results = model(source) # list of Results objects
需要注意的是,在批量推理时,虽然一次推理了多张图片,但实际处理方式仍然是通过循环进行的。在下面的文章中,我们将介绍如何使用更高效的方式进行批量推理,以获得更快的推理速度和更好的性能。
下面我们介绍如何将【单张图片推理】检测代码给修改成 【批量图片推理】代码,进行批量推理。
- @staticmethod
- def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), scaleup=True, stride=32):
- # Resize and pad image while meeting stride-multiple constraints
- shape = im.shape[:2] # current shape [height, width]
- if isinstance(new_shape, int):
- new_shape = (new_shape, new_shape)
-
- # Scale ratio (new / old)
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
- if not scaleup: # only scale down, do not scale up (for better val mAP)
- r = min(r, 1.0)
-
- # Compute padding
- ratio = r, r # width, height ratios
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
- dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
- # minimum rectangle
- dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
- dw /= 2 # divide padding into 2 sides
- dh /= 2
-
- if shape[::-1] != new_unpad: # resize
- im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
-
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
- im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
- return im, ratio, (dw, dh)
-
- def precess_image(self, img_src, img_size, half, device):
- # Padded resize
- img = self.letterbox(img_src, img_size)[0]
- # Convert
- img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
- img = np.ascontiguousarray(img)
- img = torch.from_numpy(img).to(device)
-
- img = img.half() if half else img.float() # uint8 to fp16/32
- img = img / 255 # 0 - 255 to 0.0 - 1.0
- if len(img.shape) == 3:
- img = img[None] # expand for batch dim
- return img
我们要先知道在原始处理方式中是如何操作的:
它包含以下步骤:
self.pre_transform:即 letterbox 添加灰条
img.transpose((2, 0, 1))[::-1]:HWC to CHW, BGR to RGB
torch.from_numpy:to Tensor
img.float() :uint8 to fp32
im /= 255:除以 255,归一化
img[None]:增加维度
在上述处理过程中我们最主要进行修改的就是 self.pre_transform 里面的操作,其余部分都是可以直接进行批量操作的。
在 letterbox 中最主要的操作就是下面两个函数,使用 opencv 进行实现的。我们要进行批量操作,那么 opencv 库是不能实现的,进行批量操作一般会用 广播机制 或者 tensor操作 来实现。
- im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
- im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
由于最终输入到模型里面的是一个tensor,所以在这里我们使用 tensor的操作方式进行实现。
- 原始方法:
- im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
-
- 现在方法:
- resized_tensor = F.interpolate(image_tensor, size=new_unpad, mode='bilinear', align_corners=False)
两者的实现效果:
原始方法:(1176, 1956, 3) --》(385, 640, 3)
现在方法:(1176, 1956, 3) --》(385, 640, 3)
- 原始方式:
- im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
-
- 现在方法:
- padded_tensor = F.pad(resized_tensor, (top, bottom, left, right), mode='constant', value=padding_value)
两者的实现效果:
原始方法:(385, 640, 3) --》(416, 640, 3)
现在方法:(385, 640, 3) --》(416, 640, 3)
- def tensor_process(self, image_cv):
- img_shape = image_cv.shape[1:]
- new_shape = [640, 640]
- r = min(new_shape[0] / img_shape[0], new_shape[1] / img_shape[1])
- # Compute padding
- new_unpad = int(round(img_shape[0] * r)), int(round(img_shape[1] * r))
-
- dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
- dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding
- dw /= 2 # divide padding into 2 sides
- dh /= 2
-
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
-
- padding_value = 114
-
- image_tensor = torch.from_numpy(image_cv).permute(0, 3, 1, 2).float()
- image_tensor = image_tensor.to(self.device)
-
- resized_tensor = F.interpolate(image_tensor, size=new_unpad, mode='bilinear', align_corners=False)
-
- padded_tensor = F.pad(resized_tensor, (top, bottom, left, right), mode='constant', value=padding_value)
- infer_tensor = padded_tensor / 255.0
-
- return infer_tensor
- def non_max_suppression(
- prediction,
- conf_thres=0.25,
- iou_thres=0.45,
- classes=None,
- agnostic=False,
- multi_label=False,
- labels=(),
- max_det=300,
- nc=0, # number of classes (optional)
- max_time_img=0.05,
- max_nms=30000,
- max_wh=7680,
- rotated=False,
- ):
- """
- Perform non-maximum suppression (NMS) on a set of boxes, with support for masks and multiple labels per box.
- Args:
- prediction (torch.Tensor): A tensor of shape (batch_size, num_classes + 4 + num_masks, num_boxes)
- containing the predicted boxes, classes, and masks. The tensor should be in the format
- output by a model, such as YOLO.
- conf_thres (float): The confidence threshold below which boxes will be filtered out.
- Valid values are between 0.0 and 1.0.
- iou_thres (float): The IoU threshold below which boxes will be filtered out during NMS.
- Valid values are between 0.0 and 1.0.
- classes (List[int]): A list of class indices to consider. If None, all classes will be considered.
- agnostic (bool): If True, the model is agnostic to the number of classes, and all
- classes will be considered as one.
- multi_label (bool): If True, each box may have multiple labels.
- labels (List[List[Union[int, float, torch.Tensor]]]): A list of lists, where each inner
- list contains the apriori labels for a given image. The list should be in the format
- output by a dataloader, with each label being a tuple of (class_index, x1, y1, x2, y2).
- max_det (int): The maximum number of boxes to keep after NMS.
- nc (int, optional): The number of classes output by the model. Any indices after this will be considered masks.
- max_time_img (float): The maximum time (seconds) for processing one image.
- max_nms (int): The maximum number of boxes into torchvision.ops.nms().
- max_wh (int): The maximum box width and height in pixels
- Returns:
- (List[torch.Tensor]): A list of length batch_size, where each element is a tensor of
- shape (num_boxes, 6 + num_masks) containing the kept boxes, with columns
- (x1, y1, x2, y2, confidence, class, mask1, mask2, ...).
- """
-
- # Checks
- assert 0 <= conf_thres <= 1, f"Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0"
- assert 0 <= iou_thres <= 1, f"Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0"
- if isinstance(prediction, (list, tuple)): # YOLOv8 model in validation model, output = (inference_out, loss_out)
- prediction = prediction[0] # select only inference output
-
- bs = prediction.shape[0] # batch size
- nc = nc or (prediction.shape[1] - 4) # number of classes
- nm = prediction.shape[1] - nc - 4
- mi = 4 + nc # mask start index
- xc = prediction[:, 4:mi].amax(1) > conf_thres # candidates
-
- # Settings
- # min_wh = 2 # (pixels) minimum box width and height
- time_limit = 0.5 + max_time_img * bs # seconds to quit after
- multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
-
- prediction = prediction.transpose(-1, -2) # shape(1,84,6300) to shape(1,6300,84)
- if not rotated:
- prediction[..., :4] = xywh2xyxy(prediction[..., :4]) # xywh to xyxy
-
- t = time.time()
- output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
- for xi, x in enumerate(prediction): # image index, image inference
- # Apply constraints
- # x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0 # width-height
- x = x[xc[xi]] # confidence
-
- # Cat apriori labels if autolabelling
- if labels and len(labels[xi]) and not rotated:
- lb = labels[xi]
- v = torch.zeros((len(lb), nc + nm + 4), device=x.device)
- v[:, :4] = xywh2xyxy(lb[:, 1:5]) # box
- v[range(len(lb)), lb[:, 0].long() + 4] = 1.0 # cls
- x = torch.cat((x, v), 0)
-
- # If none remain process next image
- if not x.shape[0]:
- continue
-
- # Detections matrix nx6 (xyxy, conf, cls)
- box, cls, mask = x.split((4, nc, nm), 1)
-
- if multi_label:
- i, j = torch.where(cls > conf_thres)
- x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1)
- else: # best class only
- conf, j = cls.max(1, keepdim=True)
- x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]
-
- # Filter by class
- if classes is not None:
- x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
-
- # Check shape
- n = x.shape[0] # number of boxes
- if not n: # no boxes
- continue
- if n > max_nms: # excess boxes
- x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence and remove excess boxes
-
- # Batched NMS
- c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
- scores = x[:, 4] # scores
- if rotated:
- boxes = torch.cat((x[:, :2] + c, x[:, 2:4], x[:, -1:]), dim=-1) # xywhr
- i = nms_rotated(boxes, scores, iou_thres)
- else:
- boxes = x[:, :4] + c # boxes (offset by class)
- i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
- i = i[:max_det] # limit detections
-
- # # Experimental
- # merge = False # use merge-NMS
- # if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
- # # Update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
- # from .metrics import box_iou
- # iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
- # weights = iou * scores[None] # box weights
- # x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
- # redundant = True # require redundant detections
- # if redundant:
- # i = i[iou.sum(1) > 1] # require redundancy
-
- output[xi] = x[i]
- if (time.time() - t) > time_limit:
- LOGGER.warning(f"WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded")
- break # time limit exceeded
-
- return output
我们要先知道在原始处理方式中是如何操作的。
在这个里面,最主要的操作就是 nms 操作,这里的 nms 操作就是一张图一张图的结果进行处理,不是多张图的结果一起处理,我们最主要的就是要修改这里的代码。
但是在这里,我们要先理解在原始的处理方式是怎样的逻辑。
在这里就只给出关键步骤:
计算第4列到第mi列中的最大值,然后将这个最大值与conf_thres进行比较,得到一个布尔值结果。最终的输出是一个布尔张量,表示每一行是否存在大于conf_thres的最大值。
xc = prediction[:, 4:mi].amax(1) > conf_thres # candidates
将原始预测框中的 xywh 转为 xyxy
prediction[..., :4] = xywh2xyxy(prediction[..., :4])
从原始结果中选择出为True的结果,得到初步的筛选结果
x = x[xc[xi]] # confidence
分离出 标注框,类别,掩码
box, cls, mask = x.split((4, nc, nm), 1)
再次根据 cls 进行筛选,并拼接成新的推理结果
- conf, j = cls.max(1, keepdim=True)
- x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]
计算nms
- boxes = x[:, :4] + c # boxes (offset by class)
- i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
只选出前 max_det的输出结果,避免有多余的输出
i = i[:max_det] # limit detections
将 prediction 中所有批次的结果进行统一,处理成一个批次,在将这个批次送入到 batched_nms 中,最后在进行处理,得到标注框,类别,置信度。
筛选出为true的索引(批次数)和行数
true_indices = torch.nonzero(xc)
根据索引和行数筛选出 prediction 中真实的结果,注意:这个结果是所有的批次的结果
selected_rows = prediction[true_indices[:, 0], true_indices[:, 1]]
将批次数添加在筛选出的结果中,用于区分出那个结果是那个批次的。注意:这个的批次也可以看成是对应的图片
new_prediction = torch.cat((selected_rows, true_indices[:, 0].unsqueeze(1).float()), dim=1)
分割出标注框、类别、掩码、索引(批次)
box, cls, mask, idxs = new_prediction.split((4, nc, nm, 1), 1)
筛选出最大的类别的置信和类别索引
conf, j = cls.max(1, keepdim=True)
根据类别置信度再次进行筛选,选出符合的结果,并进行拼接,得到一个新的结果
x = torch.cat((box, conf, j.float()), 1)[conf.squeeze(-1) > conf_thres]
将标注框,置信度,索引,iou值送入到 batched_nms 中,选出最终的预测结果的索引标签。
- cls = x[:, 5] # classes
- c = x[:, 5:6] * (0 if agnostic else max_wh)
- boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
- idxs = idxs.t().squeeze(0)
-
- keep = torchvision.ops.batched_nms(boxes, scores, idxs, iou_thres)
batched_nms:以批处理方式执行非最大值抑制。每个索引值对应一个类别,NMS不会应用于不同类别的元素之间。
参数:
boxes (Tensor[N, 4]):标注框,为
(x1, y1, x2, y2)
格式,其中0 <= x1 < x2
和0 <= y1 < y2
。scores (Tensor[N]):每个标注框的得分
idxs (Tensor[N]):每个标注框的类别索引。
iou_threshold(float):剔除 IoU > iou_threshold 的所有重叠方框
返回值:
Tensor:int64,为 NMS 保留的元素索引,按分数递减排序
def batched_nms(boxes: Tensor, scores: Tensor, idxs: Tensor, iou_threshold: float,) -> Tensor:
根据 nms 的筛选结果,选择出最终的预测结果
- boxes[keep] = self.scale_boxes(inferShape, boxes[keep], orgShape)
-
- boxes = boxes[keep].cpu().numpy().tolist()
- scores = scores[keep].cpu().numpy().tolist()
- cls = cls[keep].cpu().numpy().tolist()
- idxs = idxs[keep].cpu().numpy().tolist()
- def non_max_suppression(self, prediction, inferShape, orgShape, conf_thres=0.25, iou_thres=0.45, agnostic=True, multi_label=False,
- max_wh=7680, nc=0):
- prediction = prediction[0] # select only inference output
-
- nc = nc # number of classes
- nm = prediction.shape[1] - nc - 4
- mi = 4 + nc # mask start index
- xc = prediction[:, 4:mi].amax(1) > conf_thres # candidates
-
- # Settings
- multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
-
- prediction = prediction.transpose(-1, -2) # shape(1,84,6300) to shape(1,6300,84)
- prediction[..., :4] = self.xywh2xyxy(prediction[..., :4]) # xywh to xyxy
-
- true_indices = torch.nonzero(xc)
- selected_rows = prediction[true_indices[:, 0], true_indices[:, 1]]
- new_prediction = torch.cat((selected_rows, true_indices[:, 0].unsqueeze(1).float()), dim=1)
-
- if new_prediction.shape[0] == 0:
- return
-
- box, cls, mask, idxs = new_prediction.split((4, nc, nm, 1), 1)
- conf, j = cls.max(1, keepdim=True)
- x = torch.cat((box, conf, j.float()), 1)[conf.squeeze(-1) > conf_thres]
- if not x.shape[0]: # no boxes
- return
-
- cls = x[:, 5] # classes
- c = x[:, 5:6] * (0 if agnostic else max_wh)
- boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
- idxs = idxs.t().squeeze(0)
-
- keep = torchvision.ops.batched_nms(boxes, scores, idxs, iou_thres)
-
- boxes[keep] = self.scale_boxes(inferShape, boxes[keep], orgShape)
-
- boxes = boxes[keep].cpu().numpy()
- scores = scores[keep].cpu().numpy()
- cls = cls[keep].cpu().numpy()
- idxs = idxs[keep].cpu().numpy()
-
- results = np.hstack((boxes, np.expand_dims(scores, axis=1)))
- results = np.hstack((results, np.expand_dims(cls, axis=1)))
- results = np.hstack((results, np.expand_dims(idxs, axis=1)))
- return results
通过上面的解析,我们了解了 YOLO V8-Detection 如何进行批量的推理图片的方法,并对每一步进行了实现。
完整的推理代码如下:
- # -*- coding:utf-8 -*-
- # @author: 牧锦程
- # @微信公众号: AI算法与电子竞赛
- # @Email: m21z50c71@163.com
- # @VX:fylaicai
-
- import os.path
- import random
- import cv2
- import numpy as np
- import torch
- import torchvision
-
- from ultralytics.nn.autobackend import AutoBackend
- import torch.nn.functional as F
-
-
- class YOLOV8DetectionInfer:
- def __init__(self, weights, cuda, conf_thres, iou_thres) -> None:
- self.imgsz = 640
- self.device = cuda
- self.model = AutoBackend(weights, device=torch.device(cuda))
- self.model.eval()
- self.names = self.model.names
- self.conf = conf_thres
- self.iou = iou_thres
- self.color = {"font": (255, 255, 255)}
- self.color.update(
- {self.names[i]: (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
- for i in range(len(self.names))})
-
- def infer(self, img_path, save_path):
- img_src = cv2.imread(img_path)
- img_array = np.array([img_src])
-
- img = self.tensor_process(img_array)
- preds = self.model(img)
- results = self.non_max_suppression(preds, img.shape[2:], img_src.shape, self.conf, self.iou, nc=len(self.names))
-
- for result in results:
- self.draw_box(img_array[int(result[6])], result[:4], result[4], self.names[result[5]])
-
- for i in range(img_array.shape[0]):
- cv2.imwrite(os.path.join(save_path, f"{i}.jpg"), img_array[i])
-
- def draw_box(self, img_src, box, conf, cls_name):
- lw = max(round(sum(img_src.shape) / 2 * 0.003), 2) # line width
- tf = max(lw - 1, 1) # font thickness
- sf = lw / 3 # font scale
-
- color = self.color[cls_name]
- label = f'{cls_name} {conf:.4f}'
- p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
- # 绘制矩形框
- cv2.rectangle(img_src, p1, p2, color, thickness=lw, lineType=cv2.LINE_AA)
- # text width, height
- w, h = cv2.getTextSize(label, 0, fontScale=sf, thickness=tf)[0]
- # label fits outside box
- outside = box[1] - h - 3 >= 0
- p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
- # 绘制矩形框填充
- cv2.rectangle(img_src, p1, p2, color, -1, cv2.LINE_AA)
- # 绘制标签
- cv2.putText(img_src, label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
- 0, sf, self.color["font"], thickness=2, lineType=cv2.LINE_AA)
-
- def tensor_process(self, image_cv):
- img_shape = image_cv.shape[1:]
- new_shape = [640, 640]
- r = min(new_shape[0] / img_shape[0], new_shape[1] / img_shape[1])
- # Compute padding
- new_unpad = int(round(img_shape[0] * r)), int(round(img_shape[1] * r))
-
- dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
- dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding
- dw /= 2 # divide padding into 2 sides
- dh /= 2
-
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
-
- padding_value = 114
-
- # Convert
- image_cv = image_cv[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w)
- image_cv = np.ascontiguousarray(image_cv) # contiguous
- image_tensor = torch.from_numpy(image_cv).float()
- image_tensor = image_tensor.to(self.device)
-
- resized_tensor = F.interpolate(image_tensor, size=new_unpad, mode='bilinear', align_corners=False)
- padded_tensor = F.pad(resized_tensor, (top, bottom, left, right), mode='constant', value=padding_value)
- infer_tensor = padded_tensor / 255.0
-
- return infer_tensor
-
- def non_max_suppression(self, prediction, inferShape, orgShape, conf_thres=0.25, iou_thres=0.45, agnostic=True, multi_label=False,
- max_wh=7680, nc=0):
- prediction = prediction[0] # select only inference output
-
- nc = nc # number of classes
- nm = prediction.shape[1] - nc - 4
- mi = 4 + nc # mask start index
- xc = prediction[:, 4:mi].amax(1) > conf_thres # candidates
-
- # Settings
- multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
-
- prediction = prediction.transpose(-1, -2) # shape(1,84,6300) to shape(1,6300,84)
- prediction[..., :4] = self.xywh2xyxy(prediction[..., :4]) # xywh to xyxy
-
- true_indices = torch.nonzero(xc)
- selected_rows = prediction[true_indices[:, 0], true_indices[:, 1]]
- new_prediction = torch.cat((selected_rows, true_indices[:, 0].unsqueeze(1).float()), dim=1)
-
- if new_prediction.shape[0] == 0:
- return
-
- box, cls, mask, idxs = new_prediction.split((4, nc, nm, 1), 1)
- conf, j = cls.max(1, keepdim=True)
- x = torch.cat((box, conf, j.float()), 1)[conf.squeeze(-1) > conf_thres]
- if not x.shape[0]: # no boxes
- return
-
- cls = x[:, 5] # classes
- c = x[:, 5:6] * (0 if agnostic else max_wh)
- boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
- idxs = idxs.t().squeeze(0)
-
- keep = torchvision.ops.batched_nms(boxes, scores, idxs, iou_thres)
-
- boxes[keep] = self.scale_boxes(inferShape, boxes[keep], orgShape)
-
- boxes = boxes[keep].cpu().numpy()
- scores = scores[keep].cpu().numpy()
- cls = cls[keep].cpu().numpy()
- idxs = idxs[keep].cpu().numpy()
-
- results = np.hstack((boxes, np.expand_dims(scores, axis=1)))
- results = np.hstack((results, np.expand_dims(cls, axis=1)))
- results = np.hstack((results, np.expand_dims(idxs, axis=1)))
- return results
-
- def xywh2xyxy(self, x):
- assert x.shape[-1] == 4, f"input shape last dimension expected 4 but input shape is {x.shape}"
- y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x) # faster than clone/copy
- dw = x[..., 2] / 2 # half-width
- dh = x[..., 3] / 2 # half-height
- y[..., 0] = x[..., 0] - dw # top left x
- y[..., 1] = x[..., 1] - dh # top left y
- y[..., 2] = x[..., 0] + dw # bottom right x
- y[..., 3] = x[..., 1] + dh # bottom right y
- return y
-
- def clip_boxes(self, boxes, shape):
- if isinstance(boxes, torch.Tensor): # faster individually (WARNING: inplace .clamp_() Apple MPS bug)
- boxes[..., 0] = boxes[..., 0].clamp(0, shape[1]) # x1
- boxes[..., 1] = boxes[..., 1].clamp(0, shape[0]) # y1
- boxes[..., 2] = boxes[..., 2].clamp(0, shape[1]) # x2
- boxes[..., 3] = boxes[..., 3].clamp(0, shape[0]) # y2
- else: # np.array (faster grouped)
- boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2
- boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2
- return boxes
-
- def scale_boxes(self, img1_shape, boxes, img0_shape, ratio_pad=None, padding=True, xywh=False):
- if ratio_pad is None: # calculate from img0_shape
- gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
- pad = (
- round((img1_shape[1] - img0_shape[1] * gain) / 2 - 0.1),
- round((img1_shape[0] - img0_shape[0] * gain) / 2 - 0.1),
- ) # wh padding
- else:
- gain = ratio_pad[0][0]
- pad = ratio_pad[1]
-
- if padding:
- boxes[..., 0] -= pad[0] # x padding
- boxes[..., 1] -= pad[1] # y padding
- if not xywh:
- boxes[..., 2] -= pad[0] # x padding
- boxes[..., 3] -= pad[1] # y padding
- boxes[..., :4] /= gain
- return self.clip_boxes(boxes, img0_shape)
-
-
- if __name__ == '__main__':
- weights = r'yolov8n.pt'
- cuda = 'cuda:0'
- save_path = "./runs"
-
- if not os.path.exists(save_path):
- os.mkdir(save_path)
-
- model = YOLOV8DetectionInfer(weights, cuda, 0.25, 0.45)
-
- img_path = r'./ultralytics/assets/bus.jpg'
- model.infer(img_path, save_path)
推荐一本书籍:《深度学习图解》
关于本书:《深度学习图解》旨在帮助你在深度学习领域打下基础 ,以便能 够从更高层面掌握深度学习的主要框架。它从关注神经网络的基础概念开始 , 然后深入讲解那些更高级的网络设计和架构。
目标读者:阅读本书,不需要提前掌握线性代数、微积分、凸优化甚至机器学习等任何知识。理解深度学习所需的一切知识都会在本书的阅读过程中得到解释。如果你学过高中数学,并且能够使用 Python 编程,那么己经为阅读本书做好了准备。
关注下方公众号:@AI算法与电子竞赛,回复关键字“PDF”获取下载地址
欢迎关注我的公众号:@AI算法与电子竞赛
硬性的标准其实限制不了无限能的我们,所以啊!少年们加油吧!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。