当前位置:   article > 正文

通过FlinkCDC将MySQL中变更的数据写入到kafka(DataStream方式)_flink cdc 写入kafka

flink cdc 写入kafka


前言

CDC是Change Data Capture(变更数据捕获)的缩写

FlinkCDC的核心思想是监测并捕获数据库的变动(包括数据或数据表的插入、更新以及删除等),将这些变更按发生的顺序完整记录下来,写入到消息中间件中以供其他服务进行订阅及消费。


一、CDC的种类?

CDC 主要分为基于查询和基于 Binlog 两种方式,简述两者的区别:
基于查询的CDC基于binlog的CDC
常见的组件SqoopMaxwell、Canal、Debezium
思想BatchStreaming
延迟性
是否可以捕获所有数据变化

Flink 社区开发了 flink-cdc-connectors 组件,这是一个可以直接从 MySQL、PostgreSQL 等数据库直接读取全量数据和增量变更数据的 source 组件。

二、通过FlinkCDC将数据从MySQL导入到Kafka

1.核心代码

import com.alibaba.ververica.cdc.connectors.mysql.MySQLSource;
import com.alibaba.ververica.cdc.connectors.mysql.table.StartupOptions;
import com.alibaba.ververica.cdc.debezium.DebeziumSourceFunction;
import com.atguigu.app.function.CustomerDeserialization;
import com.atguigu.utils.MyKafkaUtil;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;


public class FlinkCDC {
    public static void main(String[] args) throws Exception {

        //1.获取执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        //2.flinkcdc构建SourceFunction
        DebeziumSourceFunction<String> sourceFunction = MySQLSource.<String>builder()
                .hostname("hadoop101")
                .port(3306)
                .username("root")
                .password("123456")
                .databaseList("gmall-flink")
                .tableList("gmall-flink.base_trademark")
                .deserializer(new CustomerDeserialization())
                .startupOptions(StartupOptions.latest())
                .build();
        DataStreamSource<String> streamSource = env.addSource(sourceFunction);

        //3.打印数据并将数据写入kafka
        streamSource.print();
        String sinkTopic = "ods_base_db";
        streamSource.addSink(MyKafkaUtil.getKafkaProducer(sinkTopic));

        //4.启动任务
        env.execute("FlinkCDC");

    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

2.工具类

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;

public class MyKafkaUtil {

    public static FlinkKafkaProducer<String> getKafkaProducer(String topic){

        return new FlinkKafkaProducer<String>("192.168.2.101:9092", topic, new SimpleStringSchema());
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

三、结果展示

我在MySQL数据库中每变更一条数据,在IDEA和kafka这边都可以检测到:
IDEA:
在这里插入图片描述
Kafka:
在这里插入图片描述

3.可能会出现的错误及解决

org.apache.kafka.common.errors.TimeoutException: Topic ods_base_database not present in metadata after 60000 ms
  • 1

解决:

1.vi kafka/config.server.properties
在这里插入图片描述
修改这三个地方,切记用IP地址,之前用的hadoop101一直出错

2.重启kafka,重启zookeeper,问题解决!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小惠珠哦/article/detail/836359
推荐阅读
相关标签
  

闽ICP备14008679号