当前位置:   article > 正文

学习Python系列之词云展示_python如何鼠标到词云上可以显示对应的数据

python如何鼠标到词云上可以显示对应的数据

爬取毛不易歌词作词云展示

今天我们做一个数据可视化的项目,爬取毛不易的歌词做词云展示。
1.爬取数据
我们主要使用 Python 爬虫获取 HTML,用 XPath 对歌曲的 ID、名称进行解析,然后通过网易云音乐的 API 接口获取每首歌的歌词,最后将所有的歌词合并得到一个变量。`
需要获取符合这个 XPath 的内容。我们通过分析 HTML 代码,能看到一个关键的部分:id=‘hotsong-list’。这个代表热门歌曲列表,也正是我们想要解析的内容。我们想要获取这个热门歌曲列表下面所有的链接,XPath 解析就可以写成 //*[@id=‘hotsong-list’]//a。然后你能看到歌曲链接是 href 属性,歌曲名称是这个链接的文本。

headers = {
       'Referer'  :'http://music.163.com',
       'Host'     :'music.163.com',
       'Accept'   :'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
       'User-Agent':'Chrome/10'
    }
 # 得到指定歌手页面 热门前50的歌曲ID,歌曲名
def get_songs(artist_id):
    page_url = 'https://music.163.com/artist?id=' + artist_id
    # 获取网页HTML
    res = requests.request('GET', page_url, headers=headers)
    # 用XPath解析 前50首热门歌曲
    html = etree.HTML(res.text)
    href_xpath = "//*[@id='hotsong-list']//a/@href"
    name_xpath = "//*[@id='hotsong-list']//a/text()"
    hrefs = html.xpath(href_xpath)
    names = html.xpath(name_xpath)
    # 设置热门歌曲的ID,歌曲名称
    song_ids = []
    song_names = []
    for href, name in zip(hrefs, names):
       song_ids.append(href[9:])
       song_names.append(name)
       print(href, '  ', name)
    return song_ids, song_names
# 设置歌手ID,毛不易为12138269
artist_id = '12138269'
[song_ids, song_names] = get_songs(artist_id)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

获得歌曲 ID 之后,我们还需要知道这个歌曲的歌词,对应代码中的 get_song_lyric 函数,在这个函数里调用了网易云的歌词 API 接口`

# 得到某一首歌的歌词
def get_song_lyric(headers,lyric_url):
    res = requests.request('GET', lyric_url, headers=headers)
    if 'lrc' in res.json():
       lyric = res.json()['lrc']['lyric']
       new_lyric = re.sub(r'[\d:.[\]]','',lyric)
       return new_lyric
    else:
       return ''
       print(res.json())
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
'
运行

2.设置停用词
有一些常用词,比如’作词’, ‘作曲’, '编曲’等,我们可以把这些词设置为停用词,编写 remove_stop_words 函数,从文本中去掉:

# 去掉停用词
def remove_stop_words(f):
    stop_words = ['作词', '作曲', '编曲', 'Arranger', '录音', '混音', '人声', 'Vocal', '弦乐', 'Keyboard', '键盘', '编辑', '助理', 'Assistants', 'Mixing', 'Editing', 'Recording', '音乐', '制作', 'Producer', '发行', 'produced', 'and', 'distributed']
    for stop_word in stop_words:
       f = f.replace(stop_word, '')
    return f
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
'
运行

3.最后编写 create_word_cloud 函数,通过歌词文本生成词云文件。
创建好 WordCloud 类之后,就可以使用 wordcloud=generate(text) 方法生成词云,传入的参数 text 代表你要分析的文本,最后使用 wordcloud.tofile(“a.jpg”) 函数,将得到的词云图像直接保存为图片格式文件。或者使用 Python 的可视化工具 Matplotlib 进行显示。

# 生成词云
def create_word_cloud(f):
    print('根据词频,开始生成词云!')
    f = remove_stop_words(f)
    cut_text = " ".join(jieba.cut(f,cut_all=False, HMM=True))
    wc = WordCloud(
       font_path="./wc.ttf",
       max_words=100,
       width=2000,
       height=1200,
    )
    print(cut_text)
    wordcloud = wc.generate(cut_text)
    # 写词云图片
    wordcloud.to_file("wordcloud.jpg")
    # 显示词云文件
    plt.imshow(wordcloud)
    plt.axis("off")
    plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
'
运行

4.结果展示
在这里插入图片描述
5.总结
前期的数据准备在整个过程中占了很大一部分。使用 Python 作为数据采集工具,利用Python 爬虫和 XPath 解析。词云工具 WordCloud,它是一个很好用的 Python 工具,可以将复杂的文本通过词云图的方式呈现。需要注意的是,当我们需要使用中文字体的时候,比如黑体 SimHei,就可以将 WordCloud 中的 font_path 属性设置为 SimHei.ttf,你也可以设置其他艺术字体,在给毛不易的歌词做词云展示的时候,我们就用到了艺术字体。
完整代码放在了GitHub上,地址为https://github.com/Kenneth-He/Python/tree/master/Maomao

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小惠珠哦/article/detail/923498
推荐阅读
相关标签
  

闽ICP备14008679号