赞
踩
题目链接:. - 力扣(LeetCode)
给定一个不重复的整数数组 nums
。 最大二叉树 可以用下面的算法从 nums
递归地构建:
nums
中的最大值。返回 nums
构建的 最大二叉树 。
构造树一般采用的是前序遍历,因为先构造中间节点,然后递归构造左子树和右子树。
确定递归函数的参数和返回值
参数传入的是存放元素的原数组及开始结尾下标,返回该数组构造的二叉树的头结点
确定终止条件
题目中说了输入的数组大小一定是大于等于1的,所以我们不用考虑小于1的情况,那么当递归遍历的时候,如果传入的的下标相同(也就是说只有一个元素)说明遍历到了叶子节点了。
那么应该定义一个新的节点,并把这个数组的数值赋给新的节点,然后返回这个节点。 这表示一个数组大小是1的时候,构造了一个新的节点,并返回。
确定单层递归的逻辑(再分两步)
1.先要找到数组中最大的值和对应的下标, 最大的值构造根节点,下标用来下一步分割数组。
2.递归创建左右数组
题目链接:. - 力扣(LeetCode)
给你两棵二叉树: root1
和 root2
。
想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为 null 的节点将直接作为新二叉树的节点。
返回合并后的二叉树。
注意: 合并过程必须从两个树的根节点开始。
确定递归函数的参数和返回值
首先要合入两个二叉树,那么参数至少是要传入两个二叉树的根节点,返回值就是合并之后二叉树的根节点。
确定终止条件
因为是传入了两个树,那么就有两个树遍历的节点t1 和 t2,如果t1 == NULL 了,两个树合并就应该是 t2 了(如果t2也为NULL也无所谓,合并之后就是NULL)。
反过来如果t2 == NULL,那么两个数合并就是t1(如果t1也为NULL也无所谓,合并之后就是NULL)。
确定单层递归的逻辑
单层递归的逻辑就比较好写了,这里我们重复利用一下t1这个树,t1就是合并之后树的根节点(就是修改了原来树的结构)。
那么单层递归中,就要把两棵树的元素加到一起。
题目链接:. - 力扣(LeetCode)
给定二叉搜索树(BST)的根节点 root
和一个整数值 val
。
你需要在 BST 中找到节点值等于 val
的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 null
。
如果知道一些二叉搜索树的基本性质啥的就很简单了。
(如果不清楚可以去看day 13二叉树基础知识)
其实就是往下找的一个操作,不断判断目标值和当前比较值的过程。
题目链接:. - 力扣(LeetCode)
给你一个二叉树的根节点 root
,判断其是否是一个有效的二叉搜索树。
有效 二叉搜索树定义如下:
我们都知道:二叉搜索树是一个有序树。
换句话说:中序遍历是递增的。
所以这道题我的思路很简单,判断中序遍历就好了。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。