赞
踩
部署的都是从huggingface上的model或者根据huaggingface上的model进行fine-tune后的。
一般输入格式如下:
text-classification request body { "inputs": "Camera - You are awarded a SiPix Digital Camera! call 09061221066 fromm landline. Delivery within 28 days." } question-answering request body { "inputs": { "question": "What is used for inference?", "context": "My Name is Philipp and I live in Nuremberg. This model is used with sagemaker for inference." } } zero-shot classification request body { "inputs": "Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!", "parameters": { "candidate_labels": [ "refund", "legal", "faq" ] } }
所有官方示例
- https://github.com/huggingface/notebooks/tree/main/sagemaker
推理工具
- https://github.com/aws/sagemaker-huggingface-inference-toolkit
由于模型文件比较大,需要先安装git-lfs
CentOS7安装Git LFS的方法如下:
# 安装必要的软件包:
sudo yum install curl-devel expat-devel gettext-devel openssl-devel zlib-devel
# 安装Git LFS:
curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.rpm.sh | sudo bash
# 安装
sudo yum install git-lfs
# 配置Git LFS:
git lfs install
# 检测是否安装成功:
git lfs version
如果出现版本信息,说明安装成功。
从huaggingface上clone你想使用的模型,以https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2 为例子
git clone https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
允许用户覆盖 HuggingFaceHandlerService
的默认方法。您需要创建一个名为 code/
的文件夹,其中包含 inference.py
文件。
目录结构如下:
model.tar.gz/
|- pytorch_model.bin
|- ....
|- code/
|- inference.py
|- requirements.txt
inference.py
文件包含自定义推理模块, requirements.txt
文件包含应添加的其他依赖项。自定义模块可以重写以下方法:
model_fn(model_dir)
覆盖加载模型的默认方法。返回值 model
将在 predict
中用于预测。 predict
接收参数 model_dir
,即解压后的 model.tar.gz
的路径。transform_fn(model, data, content_type, accept_type)
使用您的自定义实现覆盖默认转换函数。您需要在 transform_fn
中实现您自己的 preprocess
、 predict
和 postprocess
步骤。此方法不能与下面提到的 input_fn
、 predict_fn
或 output_fn
组合使用。input_fn(input_data, content_type)
覆盖默认的预处理方法。返回值 data
将在 predict
中用于预测。输入是:
input_data
是您请求的原始正文。content_type
是请求标头中的内容类型。predict_fn(processed_data, model)
覆盖默认的预测方法。返回值 predictions
将在 postprocess
中使用。输入是 processed_data
,即 preprocess
的结果。output_fn(prediction, accept)
覆盖后处理的默认方法。返回值 result
将是您请求的响应(例如 JSON
)。输入是:
predictions
是 predict
的结果。accept
是 HTTP 请求的返回接受类型,例如 application/json
。以下是包含 model_fn
、 input_fn
、 predict_fn
和 output_fn
的自定义推理模块的示例:
from sagemaker_huggingface_inference_toolkit import decoder_encoder def model_fn(model_dir): # implement custom code to load the model loaded_model = ... return loaded_model def input_fn(input_data, content_type): # decode the input data (e.g. JSON string -> dict) data = decoder_encoder.decode(input_data, content_type) return data def predict_fn(data, model): # call your custom model with the data outputs = model(data , ... ) return predictions def output_fn(prediction, accept): # convert the model output to the desired output format (e.g. dict -> JSON string) response = decoder_encoder.encode(prediction, accept) return response
仅使用 model_fn
和 transform_fn
自定义推理模块:
from sagemaker_huggingface_inference_toolkit import decoder_encoder def model_fn(model_dir): # implement custom code to load the model loaded_model = ... return loaded_model def transform_fn(model, input_data, content_type, accept): # decode the input data (e.g. JSON string -> dict) data = decoder_encoder.decode(input_data, content_type) # call your custom model with the data outputs = model(data , ... ) # convert the model output to the desired output format (e.g. dict -> JSON string) response = decoder_encoder.encode(output, accept) return response
重点,这里的话我们 all-MiniLM-L6-v2的示例代码如下:
from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:") print(sentence_embeddings)
我们需要改造下,改为我们自己需要的自定义代码:
from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F # 这个方法直接同上 def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # 覆盖 -- 模型加载 参考all-MiniLM-L6-v2给出的示例代码 def model_fn(model_dir): # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained(model_dir) model = AutoModel.from_pretrained(model_dir) return model, tokenizer # 覆盖 -- 预测方法 参考all-MiniLM-L6-v2给出的示例代码 def predict_fn(data, model_and_tokenizer): # destruct model and tokenizer model, tokenizer = model_and_tokenizer # Tokenize sentences sentences = data.pop("inputs", data) encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) # return dictonary, which will be json serializable return {"vectors": sentence_embeddings[0].tolist()}
cd all-MiniLM-L6-v2
tar zcvf model.tar.gz *
这里有好几种方式可选。
第一种:在jupyterlab执行这个脚本,替换model等参数即可。
第二种:这个是吧上面所有步骤都包含了,但是这种无法处理我们在私有环境fine-tune后的模型。
第三种:可视化部署,我重点介绍下这个吧
入口如下:
注意下面的选项
原文:https://huggingface.co/docs/sagemaker/inference#deploy-a-model-from-the–hub
这种方式没有上面的方式灵活度高,支持的model也没有上面的方式多。
import os import json from transformers import BertTokenizer, BertModel def model_fn(model_dir): """ Load the model for inference """ model_path = os.path.join(model_dir, 'model/') # Load BERT tokenizer from disk. tokenizer = BertTokenizer.from_pretrained(model_path) # Load BERT model from disk. model = BertModel.from_pretrained(model_path) model_dict = {'model': model, 'tokenizer':tokenizer} return model_dict def predict_fn(input_data, model): """ Apply model to the incoming request """ tokenizer = model['tokenizer'] bert_model = model['model'] encoded_input = tokenizer(input_data, return_tensors='pt') return bert_model(**encoded_input) def input_fn(request_body, request_content_type): """ Deserialize and prepare the prediction input """ if request_content_type == "application/json": request = json.loads(request_body) else: request = request_body return request def output_fn(prediction, response_content_type): """ Serialize and prepare the prediction output """ if response_content_type == "application/json": response = str(prediction) else: response = str(prediction) return response
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。