赞
踩
论文:https://arxiv.org/abs/2212.09748
Classifier-free guidance:使用条件分类器梯度引导无条件生成,得到类别条件生成的梯度。
Classifier-Free Guidance 以zero-shot的方式训练额外的分类器,实现各种条件的引导生成。如结合 CLIP 文本编码器提取 prompt 的文本特征 embedding,输入到 diffusion 模型中作为文本条件。
伪代码:
- unet = ... # 加载unet去噪模型
- clip_model = ... # 加载CLIP模型
-
- text = "a cat" # 文本条件
- text_embeddings = clip_model.text_encode(text) # 编码条件文本,cond
- empty_embeddings = clip_model.text_encode("") # 编码空文本,uncond
- text_embeddings = torch.cat(empty_embeddings, text_embeddings) # concat到一起,只做一次forward
-
- input = torch.randn((1, 3, sample_size, sample_size), device="cuda") # 采样初始噪声
-
- for t in scheduler.timesteps:
- # 用 unet 推理,预测噪声
- with torch.no_grad():
- # 这里同时预测出了有文本的和空文本的图像噪声
- noise_pred = unet(input, t, encoder_hidden_states=text_embeddings).sample
-
- # 拆成无条件和有条件的噪声
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
- # Classifier-Free Guidance 引导
- noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
- # 用预测出的 noise_pred 和 x_t 计算得到 x_t-1
- latents = scheduler.step(noise_pred, t, latents).prev_sample
DiT代码实现:
- # Create sampling noise:
- n = len(class_labels)
- z = torch.randn(n, 4, latent_size, latent_size, device=device)
- y = torch.tensor(class_labels, device=device)
-
- # Setup classifier-free guidance:
- z = torch.cat([z, z], 0)
- y_null = torch.tensor([1000] * n, device=device)
- y = torch.cat([y, y_null], 0)
- model_kwargs = dict(y=y, cfg_scale=args.cfg_scale)
- def forward_with_cfg(self, x, t, y, cfg_scale): # x: [16, 4, 32, 32]
- """
- Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
- """
- # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
- half = x[: len(x) // 2] # [8, 4, 32, 32]
- combined = torch.cat([half, half], dim=0) # [16, 4, 32, 32]
- model_out = self.forward(combined, t, y) # [16, 8, 32, 32]
- # For exact reproducibility reasons, we apply classifier-free guidance on only
- # three channels by default. The standard approach to cfg applies it to all channels.
- # This can be done by uncommenting the following line and commenting-out the line following that.
- # eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
- eps, rest = model_out[:, :3], model_out[:, 3:] # [16, 3, 32, 32], [16, 5, 32, 32]
- cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) # [8, 3, 32, 32]
- half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) # [8, 3, 32, 32]
- eps = torch.cat([half_eps, half_eps], dim=0) # [16, 3, 32, 32]
- return torch.cat([eps, rest], dim=1) # [16, 8, 32, 32]
在训练过程中以一定概率令条件编码=空,得到条件生成和无条件生成的输出,再将其线性组合作为最终的输出。
Patchify:patch_embedding
代码实现:
- '''
- PatchEmbed(
- (proj): Conv2d(4, 1152, kernel_size=(2, 2), stride=(2, 2))
- (norm): Identity()
- )
- [16, 4, 32, 32] → [16, 256, 1152]
- '''
- self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
DiT结构:
In-context conditioning:将 Timestep t 和 Label y 的 Embedding 作为输入序列中的两个附加条件,类似于ViTs中的cls token。
- x = self.x_embedder(x) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2 [16, 256, 1152] + [1, 256, 1152] = [16, 256, 1152]
- t = self.t_embedder(t) # (N, D) # [16, 1152]
- y = self.y_embedder(y, self.training) # (N, D) # [16, 1152]
- c = t + y # (N, D) # [16, 1152]
位置编码:梯度不更新
- # Will use fixed sin-cos embedding:
- self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, hidden_size), requires_grad=False)
-
- # Initialize (and freeze) pos_embed by sin-cos embedding:
- pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5)) # (256, 1152)
- self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) # (1, 256, 1152)
-
- def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
- """
- grid_size: int of the grid height and width 16
- return:
- pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
- """
- grid_h = np.arange(grid_size, dtype=np.float32)
- grid_w = np.arange(grid_size, dtype=np.float32)
- grid = np.meshgrid(grid_w, grid_h) # here w goes first
- grid = np.stack(grid, axis=0) # (2, 16, 16)
-
- grid = grid.reshape([2, 1, grid_size, grid_size]) # (2, 1, 16, 16)
- pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) # (256, 1152)
- if cls_token and extra_tokens > 0:
- pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
- return pos_embed # (256, 1152)
-
-
- def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
- assert embed_dim % 2 == 0
- # embed_dim = 576
-
- # use half of dimensions to encode grid_h
- emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # x坐标, (256, 576)
- emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # y坐标, (256, 576)
-
- pdb.set_trace()
- emb = np.concatenate([emb_h, emb_w], axis=1) # (256, 1152)
- return emb
-
-
- def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
- """
- embed_dim: output dimension for each position
- pos: a list of positions to be encoded: size (M,)
- out: (M, D)
- """
- assert embed_dim % 2 == 0
- omega = np.arange(embed_dim // 2, dtype=np.float64)
- omega /= embed_dim / 2.
- omega = 1. / 10000**omega # (288,)
-
- pos = pos.reshape(-1) # (256,)
- out = np.einsum('m,d->md', pos, omega) # (256, 288), outer product
-
- emb_sin = np.sin(out) # (256, 288)
- emb_cos = np.cos(out) # (256, 288)
-
- emb = np.concatenate([emb_sin, emb_cos], axis=1) # (256, 576)
- return emb
TimestepEmbedder:
- class TimestepEmbedder(nn.Module):
- """
- Embeds scalar timesteps into vector representations.
- """
- def __init__(self, hidden_size, frequency_embedding_size=256):
- super().__init__()
- self.mlp = nn.Sequential(
- nn.Linear(frequency_embedding_size, hidden_size, bias=True),
- nn.SiLU(),
- nn.Linear(hidden_size, hidden_size, bias=True),
- )
- self.frequency_embedding_size = frequency_embedding_size
-
- @staticmethod
- def timestep_embedding(t, dim, max_period=10000):
- """
- Create sinusoidal timestep embeddings.
- :param t: a 1-D Tensor of N indices, one per batch element.
- These may be fractional.
- :param dim: the dimension of the output.
- :param max_period: controls the minimum frequency of the embeddings.
- :return: an (N, D) Tensor of positional embeddings.
- """
- # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
- half = dim // 2 # 128
- freqs = torch.exp(
- -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
- ).to(device=t.device) # 128
- args = t[:, None].float() * freqs[None] # (16, 1) * (1, 128) = (16, 128)
- embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) # (16, 256)
- if dim % 2:
- embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
- return embedding # (16, 256)
-
- def forward(self, t):
- t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
- t_emb = self.mlp(t_freq)
- return t_emb # (16, 1152)
LabelEmbedder:
- class LabelEmbedder(nn.Module):
- """
- Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
- """
- def __init__(self, num_classes, hidden_size, dropout_prob):
- super().__init__()
- use_cfg_embedding = dropout_prob > 0
- self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) # 1001 → 1152
- self.num_classes = num_classes # 1000
- self.dropout_prob = dropout_prob # 0.1
-
- def token_drop(self, labels, force_drop_ids=None):
- """
- Drops labels to enable classifier-free guidance.
- """
- if force_drop_ids is None:
- drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
- else:
- drop_ids = force_drop_ids == 1
- labels = torch.where(drop_ids, self.num_classes, labels)
- return labels
-
- def forward(self, labels, train, force_drop_ids=None):
- use_dropout = self.dropout_prob > 0 # 0.1
- if (train and use_dropout) or (force_drop_ids is not None):
- labels = self.token_drop(labels, force_drop_ids)
- embeddings = self.embedding_table(labels)
- return embeddings # [16, 1152]
token_drop 函数实现了标签的随机丢弃,以实现Classifier-free guidance。在这个函数中,labels参数表示输入的标签,force_drop_ids用于指定哪些标签需要被强制丢弃,dropout_prob表示丢弃的概率,函数使用 torch.where函数根据 drop_ids是否=1将需要丢弃的标签替换为 self.num_classes,此时共有num_classes+1个类别。
Cross-attention:DiT结构与Condition交互的方式,与原来U-Net结构类似;将两个embeddings拼接成一个数量为2的序列,在transformer block中插入一个cross attention,条件embeddings作为cross attention的key和value;这种方式也是目前文生图模型所采用的方式,它需要额外引入15%的Gflops。
Adaptive layer norm (adaLN) block:不直接学习scale参数γ和shift参数β,而是根据t和y的嵌入向量之和对它们进行回归。
代码实现:
- class DiTBlock(nn.Module):
- """
- A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
- """
- def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs):
- super().__init__()
- self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
- self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)
- self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
- mlp_hidden_dim = int(hidden_size * mlp_ratio)
- approx_gelu = lambda: nn.GELU(approximate="tanh")
- self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
- self.adaLN_modulation = nn.Sequential(
- nn.SiLU(),
- nn.Linear(hidden_size, 6 * hidden_size, bias=True) # [16, 6912]
- )
-
- def forward(self, x, c):
- # β1, γ1, α1, β2, γ2, α2
- shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1) # 6 * [16, 1152]
- x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa)) # x * scale + shift = [16, 256, 1152] attn() * scale + x = [16, 256, 1152]
- x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp)) # mlp() * scale + x = [16, 256, 1152]
- return x
adaLN-Zero block:除了回归γ和β之外,还回归了维度缩放参数α;在残差连接之前对每个块中的linear层进行零初始化,这样网络初始化时transformer block的残差模块就是一个identity函数。
- # Zero-out adaLN modulation layers in DiT blocks:
- for block in self.blocks:
- nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
- nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
Transformer decoder:将图像tokens序列解码为输出噪声预测和输出对角协方差预测。这两个输出的形状都等于原始空间输入。首先应用最终层norm(如果使用adaLN则为自适应),并将每个token线性解码为p×p×2C张量,其中C是DiT的输入通道数。
- class FinalLayer(nn.Module):
- """
- The final layer of DiT.
- """
- def __init__(self, hidden_size, patch_size, out_channels):
- super().__init__()
- self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
- self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
- self.adaLN_modulation = nn.Sequential(
- nn.SiLU(),
- nn.Linear(hidden_size, 2 * hidden_size, bias=True)
- )
-
- def forward(self, x, c):
- shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) # 2 * [16, 1152]
- x = modulate(self.norm_final(x), shift, scale) # [16, 256, 1152]
- x = self.linear(x) # [16, 256, 32]
- return x
最后,我们将解码后的标记重新排列为其原始空间布局,以获得预测的噪声和协方差。
- def unpatchify(self, x):
- """
- x: (N, T, patch_size**2 * C)
- imgs: (N, H, W, C)
- """
- c = self.out_channels # 8
- p = self.x_embedder.patch_size[0] # 2
- h = w = int(x.shape[1] ** 0.5) # 16
- assert h * w == x.shape[1]
-
- x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) # [16, 16, 16, 2, 2, 8]
- x = torch.einsum('nhwpqc->nchpwq', x) # [16, 8, 16, 2, 16, 2]
- imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p)) # [16, 8, 32, 32]
- return imgs
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。