赞
踩
实际工程中,我们经常需要对图片进行预处理,比如:
1、图片是倾斜的
2、图片背景需要处理掉
3、图片的公章需要剔除
4、图片过暗,过亮
5、图片表格检测
6、图片表格版面分析
。。。。。。等等各种情况。
本文以表格图片为例,介绍如何进行矫正、表格检测及裁剪保存图片。
通过多次旋转计算最佳旋转角度并应用旋转矩阵矫正图片
- #coding=utf-8
- import cv2
- import numpy as np
- def rotate_image(image, angle):
- (h, w) = image.shape[: 2]
- center = (w // 2, h // 2)
- M = cv2.getRotationMatrix2D(center, angle, 1.0)
- corrected = cv2.warpAffine(image, M, (w, h), flags = cv2.INTER_CUBIC, \
- borderMode = cv2.BORDER_REPLICATE)
- return corrected
-
- def determine_score(arr):
- histogram = np.sum(arr, axis = 2, dtype = float)
- score = np.sum((histogram[..., 1 :] - histogram[..., : -1]) ** 2, \
- axis = 1, dtype = float)
- return score
-
- def correct_skew(image, delta = 0.05, limit = 10):
- thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_INV + \
- cv2.THRESH_OTSU)[1]
- angles = np.arange(-limit, limit + delta, delta)
- img_stack = np.stack([rotate_image(thresh, angle) for angle \
- in angles], axis = 0)
- scores = determine_score(img_stack)
- best_angle = angles[np.argmax(scores)]
- corrected = rotate_image(image, best_angle)
- return best_angle, corrected
- if __name__ == "__main__":
- batch_folder = r'D:\temp\pics'
- out_folder = r'D:\temp\picsout/'
- for root, dirs, files in os.walk(batch_folder):
- for file in files:
- file_path = os.path.join(root, file)
- file_path = file_path.replace('\\', '/')
- img = cv2.imread(file_path, 0)
- angle, corrected = correct_skew(img)
- print(angle,file_path)
- cv2.imwrite(out_folder + file_path.split('/')[-1], corrected)
通过微软的table-transformer-detection进行表格,该模型可在Hugging Face 官网下载。
通过PIL里的Image的crop方法对指定的let_top,right_bottom进行裁剪。
相关代码见下:
- from PIL import Image
- import matplotlib.pyplot as plt
- file_path = r'D:\temp\pics\efb.jpg'
- image = Image.open(file_path).convert("RGB")
- width, height = image.size
- image.resize((int(width * 0.5), int(height * 0.5)))
- from transformers import DetrFeatureExtractor
-
- feature_extractor = DetrFeatureExtractor()
- encoding = feature_extractor(image, return_tensors="pt")
- encoding.keys()
- from transformers import TableTransformerForObjectDetection
- model = TableTransformerForObjectDetection.from_pretrained(r"D:\Modles\table-transformer-detection/")
- import torch
-
- with torch.no_grad():
- outputs = model(**encoding)
- COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
- [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
-
-
- def plot_results(pil_img, scores, labels, boxes):
- plt.figure(figsize=(16, 10))
- plt.imshow(pil_img)
- ax = plt.gca()
- colors = COLORS * 100
- for score, label, (xmin, ymin, xmax, ymax), c in zip(scores.tolist(), labels.tolist(), boxes.tolist(), colors):
- ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
- fill=False, color=c, linewidth=3))
- text = f'{model.config.id2label[label]}: {score:0.2f}'
- ax.text(xmin, ymin, text, fontsize=15,
- bbox=dict(facecolor='yellow', alpha=0.5))
- plt.axis('off')
- plt.show()
-
- if __name__ == "__main__":
- width, height = image.size
- results = feature_extractor.post_process_object_detection(outputs, threshold=0.2, target_sizes=[(height, width)])[0]
- plot_results(image, results['scores'], results['labels'], results['boxes'])
- print(results['scores'])
- print(results['labels'])
- print(results['boxes'])
- print(results['boxes'][0][0],type((results['boxes'][0][0])))
- x0=int(results['boxes'][0][0].item())-50
- y0=int(results['boxes'][0][1].item())-50
- x1=int(results['boxes'][0][2].item())+50
- y1=int(results['boxes'][0][3].item())+50
- img2 = image.crop((x0,y0,x1,y1))
- img2.save(r"D:\\efb.jpg")
-
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。