当前位置:   article > 正文

一维卷积神经网络的特征可视化_如何将一维卷积神经网络的权值在原始图像上表现出来

如何将一维卷积神经网络的权值在原始图像上表现出来

随着以深度学习为代表的人工智能技术的不断发展,许多具有重要意义的深度学习模型和算法被开发出来,应用于计算机视觉、自然语言处理、语音处理、生物医疗、金融应用等众多行业领域。深度学习先进的数据挖掘、训练和分析能力来源于深度神经网络的海量模型参数以及高度非线性。也正因为深度学习算法的高度复杂性,许多模型往往难以解释其内部工作原理,这导致这些模型被称为缺乏可解释性的“黑箱模型”。

随着AI应用渗透到各行各业,AI的科技伦理受到广泛的关注。而科技伦理的一个核心议题就是可解释人工智能XAI。从社会科学角度,可解释性是指人对决策原因的理解程度,可解释性越高,人就越能理解为什么做出这样的决策。对应于AI领域,可解释性是指能够在一定程度上揭示AI模型内部工作机制和对模型结果的进行解释,帮助用户理解模型是如何做出预测或决策的。

因此,本文简单地对一维卷积神经网络的特征进行可视化,运行环境为Python,研究对象为心电信号。

首先导入相关库

  1. import pandas as pd
  2. import numpy as np
  3. import tensorflow as tf
  4. import matplotlib.pyplot as plt
  5. import signal_screen
  6. import signal_screen_tools
  7. from tensorflow.keras.models import Sequential
  8. from tensorflow.keras.layers import Dense, Conv1D, MaxPool1D, Flatten, BatchNormalization, Input
  9. from tensorflow.keras.callbacks import ModelCheckpoint

数据导入及处理

  1. # load data
  2. data_train = pd.read_csv("mitbih_train.csv", sep=",", header=None).to_numpy()
  3. data_test = pd.read_csv("mitbih_test.csv", sep=",", header=None).to_numpy()
  4. # get X and y
  5. X_train, y_train = data_train[:, :data_train.shape[1]-2], data_train[:, -1]
  6. X_test, y_test = data_test[:, :data_test.shape[1]-2], data_test[:, -1]
  7. # number of categories
  8. num_of_categories = np.unique(y_train).shape[0]
  9. del data_train, data_test
  10. #indexing examples to show visualisations
  11. examples_to_visualise = [np.where(y_test == i)[0][0] for i in range(5)]
  12. titles = [ "nonectopic", "supraventricular ectopic beat", "ventricular ectopic beat", "fusion beat", "unknown"]
  13. # creation of tensors
  14. X_train = np.expand_dims(tf.convert_to_tensor(X_train), axis=2)
  15. X_test = np.expand_dims(tf.convert_to_tensor(X_test), axis=2)
  16. # one-hot encoding for 5 categories
  17. y_train = tf.one_hot(y_train, num_of_categories)
  18. y_test = tf.one_hot(y_test, num_of_categories)

建立模型并进行训练

  1. # basic model
  2. model = Sequential([
  3. Input(shape=[X_train.shape[1], 1]),
  4. Conv1D(filters=16, kernel_size=3, activation="relu"),
  5. BatchNormalization(),
  6. MaxPool1D(),
  7. Conv1D(filters=32, kernel_size=3, activation="relu"),
  8. BatchNormalization(),
  9. Conv1D(filters=64, kernel_size=3, activation="relu"),
  10. BatchNormalization(),
  11. Flatten(),
  12. Dense(20, activation="relu"),
  13. Dense(num_of_categories, activation="softmax")
  14. ]
  15. )
  16. # train process
  17. model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
  18. checkPoint = ModelCheckpoint(filepath="model.h5", save_weights_only=False, monitor='val_accuracy',
  19. mode='max', save_best_only=True)
  20. model.fit(x=np.expand_dims(X_train, axis=2), y=y_train,
  21. batch_size=128, epochs=10, validation_data=(np.expand_dims(X_test, axis=2), y_test),
  22. callbacks=[checkPoint])
  23. model = tf.keras.models.load_model("model.h5")
  24. loss, acc = model.evaluate(np.expand_dims(X_test, axis=2), y_test)

采用Occlusion Sensitivity方法进行可视化,相关的参考文献较多。

  1. fig, axs = plt.subplots(nrows=5, ncols=1)
  2. fig.suptitle("Occlusion sensitivity")
  3. fig.tight_layout()
  4. fig.set_size_inches(10, 10)
  5. axs = axs.ravel()
  6. for c, row, ax, title in zip(range(5), examples_to_visualise, axs, titles):
  7. sensitivity, _ = signal_screen.calculate_occlusion_sensitivity(model=model,
  8. data=np.expand_dims(X_test[row, :], axis=(0, 2)),
  9. c=c,
  10. number_of_zeros=[15])
  11. # create gradient plot
  12. signal_screen_tools.plot_with_gradient(ax=ax, y=X_test[row, :].ravel(), gradient=sensitivity[0], title=title)
  13. ax.set_xlabel("Samples[-]")
  14. ax.set_ylabel("ECG [-]")
  15. plt.show()

采用Saliency map方法进行可视化。

采用Grad-CAM方法进行可视化。

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家。

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小舞很执着/article/detail/1010580
推荐阅读
相关标签
  

闽ICP备14008679号