当前位置:   article > 正文

人工智能、机器学习、深度学习的关系,终于有人讲明白了

简述人工智能,机器学习,深度学习之间的关系

作者:史丹青

来源:大数据DT(ID:hzdashuju)

2012年以后,信息爆炸带来的数据量猛增、计算机算力的高速提升、深度学习的出现以及运用,使人工智能的研究领域不断扩展,迎来大爆发。除了传统的专家系统、机器学习等,进化计算、模糊逻辑、计算机视觉、自然语言处理、推荐系统也接二连三有了里程碑式的成果[1],见图1-10。

a33e864c211db430a6471b96ea4dfce7.png

▲图1-10 人工智能的分支

机器学习属于人工智能的分支之一,且处于核心地位。顾名思义,机器学习的研究旨在让计算机学会学习,能够模拟人类的学习行为,建立学习能力,实现识别和判断。机器学习使用算法来解析海量数据,从中找出规律,并完成学习,用学习出来的思维模型对真实事件做出决策和预测。这种方式也称为“训练”。

深度学习是机器学习的一种实现技术,在2006年被Hinton等人首次提出。深度学习遵循仿生学,源自神经元以及神经网络的研究,能够模仿人类神经网络传输和接收信号的方式,进而达到学习人类的思维方式的目的[2]

简而言之,机器学习是一种实现人工智能的方法,深度学习是一种实现机器学习的技术,而生成对抗网络则是深度学习中的一种分类。它们之间的关系可以通过图1-11清晰地表示。

df4c5336e8b1739c68903f128608e53d.png

▲图1-11 人工智能、机器学习、深度学习与生成对抗网络四者的关系

01 机器学习分类

在机器学习或者人工智能领域,有几种主要的学习方式:监督式学习、无监督式学习、强化学习。监督式学习主要用于回归和分类,无监督式学习主要用于聚类。

1. 监督式学习

监督式学习[3]是从有标签训练集中学到或建立一个模式,并根据此模式推断新的实例。训练集由输入数据(通常是向量)和预期输出标签所组成。当函数的输出是一个连续的值时称为回归分析,当预测的内容是一个离散标签时,称为分类。

2. 无监督

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小舞很执着/article/detail/1013836
推荐阅读
相关标签
  

闽ICP备14008679号