赞
踩
UDAF是Hive中用户自定义的聚集函数,Hive内置UDAF函数包括有sum()与count(),UDAF实现有简单与通用两种方式,简单UDAF因为使用Java反射导致性能损失,而且有些特性不能使用,已经被弃用了;在这篇博文中我们将关注Hive中自定义聚类函数-GenericUDAF,UDAF开发主要涉及到以下两个抽象类:
点击(此处)折叠或打开
org.apache.hadoop.hive.ql.udf.generic.AbstractGenericUDAFResolver
org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator
如果你想浏览代码:fork it on Github:https://github.com/rathboma/hive-extension-examples
示例数据准备
首先先创建一张包含示例数据的表:people,该表只有name一列,该列中包含了一个或多个名字,该表数据保存在people.txt文件中。
点击(此处)折叠或打开
~$ cat ./people.txt
John Smith
John and Ann White
Ted Green
Dorothy
把该文件上载到HDFS目录/user/matthew/people中:
点击(此处)折叠或打开
hadoop fs -mkdir people
hadoop fs -put ./people.txt people
下面要创建Hive外部表,在Hive shell中执行
点击(此处)折叠或打开
CREATE EXTERNAL TABLE people (name string)
ROW FORMAT DELIMITED FIELDS
TERMINATED BY '\t'
ESCAPED BY ''
LINES TERMINATED BY '\n'
STORED AS TEXTFILE
LOCATION '/user/matthew/people';
相关抽象类介绍
创建一个GenericUDAF必须先了解以下两个抽象类:
点击(此处)折叠或打开
org.apache.hadoop.hive.ql.udf.generic.AbstractGenericUDAFResolver
org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator
为了更好理解上述抽象类的API,要记住hive只是mapreduce函数,只不过hive已经帮助我们写好并隐藏mapreduce,向上提供简洁的sql函数,所以我们要结合Mapper、Combiner与Reducer来帮助我们理解这个函数。要记住在hadoop集群中有若干台机器,在不同的机器上Mapper与Reducer任务独立运行。
所以大体上来说,这个UDAF函数读取数据(mapper),聚集一堆mapper输出到部分聚集结果(combiner),并且最终创建一个最终的聚集结果(reducer)。因为我们跨域多个combiner进行聚集,所以我们需要保存部分聚集结果。
AbstractGenericUDAFResolver
Resolver很简单,要覆盖实现下面方法,该方法会根据sql传人的参数数据格式指定调用哪个Evaluator进行处理。
点击(此处)折叠或打开
public GenericUDAFEvaluator getEvaluator(TypeInfo[] parameters) throws SemanticException;
GenericUDAFEvaluator
UDAF逻辑处理主要发生在Evaluator中,要实现该抽象类的几个方法。
在理解Evaluator之前,必须先理解objectInspector接口与GenericUDAFEvaluator中的内部类Model。
ObjectInspector
作用主要是解耦数据使用与数据格式,使得数据流在输入输出端切换不同的输入输出格式,不同的Operator上使用不同的格式。可以参考这两篇文章&
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。