当前位置:   article > 正文

算法学习笔记——栈的经典问题_数据结构栈的基本算法遇到的问题有哪些

数据结构栈的基本算法遇到的问题有哪些

栈有很多典型的题目,这些题目整体难度不算很大,但是对于刚刚开始刷算法的同学来说,还是会感到比较吃力,这一章,我们就来盘点几个经典的高频栈算法问题。

1. 括号匹配问题

栈的典型题目还是非常明显的,括号匹配、表达式计算等等几乎都少不了栈,本小节我们就看两个最经典的问题。

20. 有效的括号 - 力扣(LeetCode)

首先看题目要求,LeetCode20. 给定一个只包括 ‘(’,‘)’,‘{’,‘}’,‘[’,‘]’ 的字符串 s ,判断字符串是否有效。有效字符串需满足:

  1. 左括号必须用相同类型的右括号闭合。
  2. 左括号必须以正确的顺序闭合。
示例1:
输入:s = "()[]{}"
输出:true
  • 1
  • 2
  • 3

本题还是比较简单的,其中比较麻烦的是如何判断两个符号是不是一组的,我们可以用哈希表将所有符号先存储,左半边做key,右半边做value。遍历字符串的时候,遇到左半边符号就入栈,遇到右半边符号就与栈顶的符号比较,不匹配就返回false

private static boolean isValid(String s) {
    if (s.length() <= 1) {
        return false;
    }
    HashMap<Character, Character> smap = new HashMap<>();
    smap.put('(', ')');
    smap.put('{', '}');
    smap.put('[', ']');

    Stack<Character> stack = new Stack<>();

    for (int i = 0; i < s.length(); i++) {
        char item = s.charAt(i);
        if (smap.containsKey(item)) {
            stack.push(item);
        } else {
            if (!stack.isEmpty()) {
                Character left = stack.pop();
                char rightChar = smap.get(left);
                if (rightChar != item) {
                    return false;
                }
            } else {
                return false;
            }
        }
    }
    return stack.isEmpty();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

LeetCode给我们造了十几个括号匹配的问题,都是条件变来变去,但是解决起来有难有易,如果你感兴趣,可以继续研究一下:Leetcode20 有效的括号、LeetCode22 .括号生成、LeetCode32.最长有效括号、LeetCode301.删除无效的括号和leetcode 856 括号的分数等。

2. 最小栈

155. 最小栈 - 力扣(LeetCode)

LeetCode 155,设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈。
实现 MinStack 类:

MinStack() 初始化堆栈对象。
void push(int val) 将元素val推入堆栈。
void pop() 删除堆栈顶部的元素。
int top() 获取堆栈顶部的元素。
int getMin() 获取堆栈中的最小元素。
  • 1
  • 2
  • 3
  • 4
  • 5

实例:

输入:
["MinStack","push","push","push","getMin","pop","top","getMin"]
[[],[-2],[0],[-3],[],[],[],[]]

输出:
[null,null,null,null,-3,null,0,-2]

解释:
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin();   --> 返回 -3.
minStack.pop();
minStack.top();      --> 返回 0.
minStack.getMin();   --> 返回 -2.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

本题的关键在于理解getMin()到底表示什么,可以看一个例子上面的示例画成示意图如下:

image.png

这里的关键是理解对应的Min栈内,中间元素为什么是-2,理解了本题就非常简单。

题目要求在常数时间内获得栈中的最小值,因此不能在 getMin() 的时候再去计算最小值,最好应该在 push 或者 pop 的时候就已经计算好了当前栈中的最小值。

对于栈来说,如果一个元素 a 在入栈时,栈里有其它的元素 b, c, d,那么无论这个栈在之后经历了什么操作,只要 a 在栈中,b, c, d 就一定在栈中,因为在 a 被弹出之前,b, c, d 不会被弹出。

因此,在操作过程中的任意一个时刻,只要栈顶的元素是 a,那么我们就可以确定栈里面现在的元素一定是 a, b, c, d。

那么,我们可以在每个元素 a 入栈时把当前栈的最小值 m 存储起来。在这之后无论何时,如果栈顶元素是 a,我们就可以直接返回存储的最小值 m。

按照上面的思路,我们只需要设计一个数据结构,使得每个元素 a 与其相应的最小值 m 时刻保持一一对应。因此我们可以使用一个辅助栈,与元素栈同步插入与删除,用于存储与每个元素对应的最小值。

  • 当一个元素要入栈时,我们取当前辅助栈的栈顶存储的最小值,与当前元素比较得出最小值,将这个最小值插入辅助栈中;
  • 当一个元素要出栈时,我们把辅助栈的栈顶元素也一并弹出;

在任意一个时刻,栈内元素的最小值就存储在辅助栈的栈顶元素中。

class MinStack {
    Deque<Integer> xStack;
    Deque<Integer> minStack;

    public MinStack() {
        xStack = new LinkedList<Integer>();
        minStack = new LinkedList<Integer>();
        minStack.push(Integer.MAX_VALUE);
    }
    
    public void push(int x) {
        xStack.push(x);
        minStack.push(Math.min(minStack.peek(), x));
    }
    
    public void pop() {
        xStack.pop();
        minStack.pop();
    }
    
    public int top() {
        return xStack.peek();
    }
    
    public int getMin() {
        return minStack.peek();
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

链表解法:

class MinStack {
    private Node head;
    
    public void push(int x) {
        if(head == null) 
            head = new Node(x, x);
        else 
            head = new Node(x, Math.min(x, head.min), head);
    }

    public void pop() {
        head = head.next;
    }

    public int top() {
        return head.val;
    }

    public int getMin() {
        return head.min;
    }
    
    private class Node {
        int val;
        int min;
        Node next;
        
        private Node(int val, int min) {
            this(val, min, null);
        }
        
        private Node(int val, int min, Node next) {
            this.val = val;
            this.min = min;
            this.next = next;
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

3. 最大栈

LeetCode 716.设计一个最大栈数据结构,既支持栈操作,又支持查找栈中最大元素。
实现 MaxStack 类:

MaxStack() 初始化栈对象
void push(int x) 将元素 x 压入栈中。
int pop() 移除栈顶元素并返回这个元素。
int top() 返回栈顶元素,无需移除。
int peekMax() 检索并返回栈中最大元素,无需移除。
int popMax() 检索并返回栈中最大元素,并将其移除。
    如果有多个最大元素,只要移除 最靠近栈顶 的那个。
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

实例:

输入
["MaxStack", "push", "push", "push", "top", "popMax", "top", "peekMax", "pop", "top"]
[[], [5], [1], [5], [], [], [], [], [], []]
输出
[null, null, null, null, 5, 5, 1, 5, 1, 5]

解释
MaxStack stk = new MaxStack();
stk.push(5);   // [5] - 5 既是栈顶元素,也是最大元素
stk.push(1);   // [5, 1] - 栈顶元素是 1,最大元素是 5
stk.push(5);   // [5, 1, 5] - 5 既是栈顶元素,也是最大元素
stk.top();     // 返回 5,[5, 1, 5] - 栈没有改变
stk.popMax();  // 返回 5,[5, 1] - 栈发生改变,栈顶元素不再是最大元素
stk.top();     // 返回 1,[5, 1] - 栈没有改变
stk.peekMax(); // 返回 5,[5, 1] - 栈没有改变
stk.pop();     // 返回 1,[5] - 此操作后,5 既是栈顶元素,也是最大元素
stk.top();     // 返回 5,[5] - 栈没有改变
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

本题与上一题的相反,但是处理方法是一致的。一个普通的栈可以支持前三种操作 push(x),pop() 和 top(),所以我们需要考虑的仅为后两种操作 peekMax() 和 popMax()。
对于 peekMax(),我们可以另一个栈来存储每个位置到栈底的所有元素的最大值。例如,如果当前第一个栈中的元素为 [2, 1, 5, 3, 9],那么第二个栈中的元素为 [2, 2, 5, 5, 9]。在 push(x) 操作时,只需要将第二个栈的栈顶和 xx 的最大值入栈,而在 pop() 操作时,只需要将第二个栈进行出栈。
对于 popMax(),由于我们知道当前栈中最大的元素值,因此可以直接将两个栈同时出栈,并存储第一个栈出栈的所有值。当某个时刻,第一个栈的出栈元素等于当前栈中最大的元素值时,就找到了最大的元素。此时我们将之前出第一个栈的所有元素重新入栈,并同步更新第二个栈,就完成了 popMax() 操作。

class MaxStack {
    Stack<Integer> stack;
    Stack<Integer> maxStack;

    public MaxStack() {
        stack = new Stack();
        maxStack = new Stack();
    }

    public void push(int x) {
        int max = maxStack.isEmpty() ? x : maxStack.peek();
        maxStack.push(max > x ? max : x);
        stack.push(x);
    }

    public int pop() {
        maxStack.pop();
        return stack.pop();
    }

    public int top() {
        return stack.peek();
    }

    public int peekMax() {
        return maxStack.peek();
    }

    public int popMax() {
        int max = peekMax();
        Stack<Integer> buffer = new Stack();
        while (top() != max) buffer.push(pop());
        pop();
        while (!buffer.isEmpty()) push(buffer.pop());
        return max;
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小舞很执着/article/detail/796272
推荐阅读
相关标签
  

闽ICP备14008679号