赞
踩
参考文章:https://blog.csdn.net/qq_26074263/article/details/86626833
将参考博客中的代码进行了补全,现在只需要有图片和yolo格式的标签就可以转换为coco格式的标签
第一步:将yolo格式的标签:classId, xCenter, yCenter, w, h转换为coco格式:classId, xMin, yMim, xMax, yMax格式。coco的id编号从1开始计算,所以这里classId应该从1开始计算。最终annos.txt中每行为imageName, classId, xMin, yMim, xMax, yMax, 一个bbox对应一行
- import os
- import cv2
-
- # 原始标签路径
- originLabelsDir = r'G:\data\cell_phone_samples\correct_images_and_labels' \
- r'\cellphone_labels_cut_person_and_cellphone_total\labels\val'
- # 转换后的文件保存路径
- saveDir = r'G:\data\cell_phone_samples\correct_images_and_labels' \
- r'\cellphone_labels_cut_person_and_cellphone_total\labels_coco_format\annos.txt'
- # 原始标签对应的图片路径
- originImagesDir = r'G:\data\cell_phone_samples\correct_images_and_labels' \
- r'\cellphone_labels_cut_person_and_cellphone_total\images\val'
-
- txtFileList = os.listdir(originLabelsDir)
- with open(saveDir, 'w') as fw:
- for txtFile in txtFileList:
- with open(os.path.join(originLabelsDir, txtFile), 'r') as fr:
- labelList = fr.readlines()
- for label in labelList:
- label = label.strip().split()
- x = float(label[1])
- y = float(label[2])
- w = float(label[3])
- h = float(label[4])
-
- # convert x,y,w,h to x1,y1,x2,y2
- imagePath = os.path.join(originImagesDir,
- txtFile.replace('txt', 'jpg'))
- image = cv2.imread(imagePath)
- H, W, _ = image.shape
- x1 = (x - w / 2) * W
- y1 = (y - h / 2) * H
- x2 = (x + w / 2) * W
- y2 = (y + h / 2) * H
- # 为了与coco标签方式对,标签序号从1开始计算
- fw.write(txtFile.replace('txt', 'jpg') + ' {} {} {} {} {}\n'.format(int(label[0]) + 1, x1, y1, x2, y2))
-
- print('{} done'.format(txtFile))
第二步:将标签转换为coco格式并以json格式保存,代码如下。根路径root_path中,包含images(图片文件夹),annos.txt(bbox标注),classes.txt(一行对应一种类别名字), 以及annotations文件夹(如果没有则会自动创建,用于保存最后的json)
- import json
- import os
- import cv2
-
- # ------------用os提取images文件夹中的图片名称,并且将BBox都读进去------------
- # 根路径,里面包含images(图片文件夹),annos.txt(bbox标注),classes.txt(类别标签),
- # 以及annotations文件夹(如果没有则会自动创建,用于保存最后的json)
- root_path = r'G:\data\cell_phone_samples\correct_images_and_labels\cellphone_labels_cut_person_and_cellphone_total\labels_coco_format'
- # 用于创建训练集或验证集
- phase = 'train' # 需要修正
-
- # dataset用于保存所有数据的图片信息和标注信息
- dataset = {'categories': [], 'annotations': [], 'images': []}
-
- # 打开类别标签
- with open(os.path.join(root_path, 'classes.txt')) as f:
- classes = f.read().strip().split()
-
- # 建立类别标签和数字id的对应关系
- for i, cls in enumerate(classes, 1):
- dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'})
-
- # 读取images文件夹的图片名称
- indexes = os.listdir(os.path.join(root_path, 'images'))
-
- # 统计处理图片的数量
- global count
- count = 0
-
- # 读取Bbox信息
- with open(os.path.join(root_path, 'annos.txt')) as tr:
- annos = tr.readlines()
-
- # ---------------接着将,以上数据转换为COCO所需要的格式---------------
- for k, index in enumerate(indexes):
- count += 1
- # 用opencv读取图片,得到图像的宽和高
- im = cv2.imread(os.path.join(root_path, 'images/') + index)
- height, width, _ = im.shape
-
- # 添加图像的信息到dataset中
- dataset['images'].append({'file_name': index,
- 'id': k,
- 'width': width,
- 'height': height})
-
- for ii, anno in enumerate(annos):
- parts = anno.strip().split()
-
- # 如果图像的名称和标记的名称对上,则添加标记
- if parts[0] == index:
- # 类别
- cls_id = parts[1]
- # x_min
- x1 = float(parts[2])
- # y_min
- y1 = float(parts[3])
- # x_max
- x2 = float(parts[4])
- # y_max
- y2 = float(parts[5])
- width = max(0, x2 - x1)
- height = max(0, y2 - y1)
- dataset['annotations'].append({
- 'area': width * height,
- 'bbox': [x1, y1, width, height],
- 'category_id': int(cls_id),
- 'id': i,
- 'image_id': k,
- 'iscrowd': 0,
- # mask, 矩形是从左上角点按顺时针的四个顶点
- 'segmentation': [[x1, y1, x2, y1, x2, y2, x1, y2]]
- })
-
- print('{} images handled'.format(count))
-
- # 保存结果的文件夹
- folder = os.path.join(root_path, 'annotations')
- if not os.path.exists(folder):
- os.makedirs(folder)
- json_name = os.path.join(root_path, 'annotations/{}.json'.format(phase))
- with open(json_name, 'w') as f:
- json.dump(dataset, f)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。