赞
踩
解决方案中的问题是“元素数据提取”没有正确完成。您在问题中提到的xml嵌套在几个层中。这就是为什么我们需要递归地读取和提取数据。在这种情况下,下面的解决方案应该能满足您的需要。尽管我鼓励你看一下this article和{a2}以获得更清晰的理解。在
方法:1import numpy as np
import pandas as pd
#import os
import xml.etree.ElementTree as ET
def xml2df(xml_source, df_cols, source_is_file = False, show_progress=True):
"""Parse the input XML source and store the result in a pandas
DataFrame with the given columns.
For xml_source = xml_file, Set: source_is_file = True
For xml_source = xml_string, Set: source_is_file = False
Child 1 Text
Child 2 Text
Child 3 Text
Note that for an xml structure as shown above, the attribute information of
element tag can be accessed by list(element). Any text associated with tag can be accessed
as element.text and the name of the tag itself can be accessed with
element.tag.
"""
if source_is_file:
xtree = ET.parse(xml_source) # xml_source = xml_file
xroot = xtree.getroot()
else:
xroot = ET.fromstring(xml_source) # xml_source = xml_string
consolidator_dict = dict()
default_instance_dict = {label: None for label in df_cols}
def get_children_info(children, instance_dict):
# We avoid using element.getchildren() as it is deprecated.
# Instead use list(element) to get a list of attributes.
for child in children:
#print(child)
#print(child.tag)
#print(child.items())
#print(child.getchildren()) # deprecated method
#print(list(child))
if len(list(child))>0:
instance_dict = get_children_info(list(child),
instance_dict)
if len(list(child.keys()))>0:
items = child.items()
instance_dict.update({key: value for (key, value) in items})
#print(child.keys())
instance_dict.update({child.tag: child.text})
return instance_dict
# Loop over all instances
for instance in list(xroot):
instance_dict = default_instance_dict.copy()
ikey, ivalue = instance.items()[0] # The first attribute is "ID"
instance_dict.update({ikey: ivalue})
if show_progress:
print('{}: {}={}'.format(instance.tag, ikey, ivalue))
# Loop inside every instance
instance_dict = get_children_info(list(instance),
instance_dict)
#consolidator_dict.update({ivalue: instance_dict.copy()})
consolidator_dict[ivalue] = instance_dict.copy()
df = pd.DataFrame(consolidator_dict).T
df = df[df_cols]
return df
运行以下命令以生成所需的输出。在
^{pr2}$
方法:2
{{cd2>你可以转换。运行以下命令以获得所需的输出。在pip install -U xmltodictSolutiondef read_recursively(x, instance_dict):
#print(x)
txt = ''
for key in x.keys():
k = key.replace("@","")
if k in df_cols:
if isinstance(x.get(key), dict):
instance_dict, txt = read_recursively(x.get(key), instance_dict)
#else:
instance_dict.update({k: x.get(key)})
#print('{}: {}'.format(k, x.get(key)))
else:
#print('else: {}: {}'.format(k, x.get(key)))
# dig deeper if value is another dict
if isinstance(x.get(key), dict):
instance_dict, txt = read_recursively(x.get(key), instance_dict)
# add simple text associated with element
if k=='#text':
txt = x.get(key)
# update text to corresponding parent element
if (k!='#text') and (txt!=''):
instance_dict.update({k: txt})
return (instance_dict, txt)
您需要上面给出的函数read_recursively()。现在运行以下命令。在import xmltodict, json
o = xmltodict.parse(xml_string) # INPUT: XML_STRING
#print(json.dumps(o)) # uncomment to see xml to json converted string
consolidated_dict = dict()
oi = o['Instances']['Instance']
for x in oi:
instance_dict = dict()
instance_dict, _ = read_recursively(x, instance_dict)
consolidated_dict.update({x.get("@ID"): instance_dict.copy()})
df = pd.DataFrame(consolidated_dict).T
df = df[df_cols]
df
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。