当前位置:   article > 正文

手把手教你模型选择,模型评估_产品选型评估模型

产品选型评估模型

数据来源是:头条新闻数据,经过处理之后的部分数据如下:
在这里插入图片描述
首先通过交叉验证,取选择模型:

from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import LinearSVC

from sklearn.model_selection import cross_val_score
models = [RandomForestClassifier(n_estimators=200,
                                max_depth = 3,
                                random_state = 0),
                                LinearSVC(),
                                MultinomialNB(),
                                 LogisticRegression(random_state=0),
                                 ]
cv = 5
cv_df = pd.DataFrame(index = range(cv*len(models)))

entries = []

for model in models:
    model_name = model.__class__.__name__
    accuracies = cross_val_score(model,features,labels,scoring = 'accuracy',cv = cv)
    for fold_idx,accuracy in enumerate(accuracies):
        print(model_name,fold_idx,accuracy)
        entries.append((model_name,fold_idx,accuracy))
print(entries[:10])#entries加入的是元组
cv_df = pd.DataFrame(entries,columns = ['model_name','fold_idx','accuracy'])
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

也可以将结果可视化展示:

import seaborn as sns
sns.boxplot(x='model_name',y='accuracy',data = cv_df)
sns.stripplot(x='model_name',y='accuracy',data = cv_df,
             size =8, jitter = True,edgecolor = 'gray',linewidth =2)
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5

在这里插入图片描述
在这里插入图片描述

通过混淆矩阵去查看各个分类的结果

from sklearn.metrics import confusion_matrix

conf_mat = confusion_matrix(y_test,y_pred)

fig,ax = plt.subplots(figsize=(10,10))
sns.heatmap(conf_mat,annot = True,fmt = 'd',xticklabels =category_id_df.label_content.values,
                     yticklabels = category_id_df.label_content.values)

plt.ylabel('Actual' )

plt.xlabel('Predicted')

plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小舞很执着/article/detail/909049
推荐阅读
相关标签
  

闽ICP备14008679号