赞
踩
官方教程地址:
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
cifar-10 数据集由 60000 张分辨率为 32x32 彩色图像组成;
共分为 10 类,每类包含 6000 张图像;这十类为:含飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船以及卡车。这些类是完全相互排斥的。
cifar-10 数据集有 50000 个训练图像和 10000 个测试图像。
数据集分为五个训练批次和一个测试批次,每个批次包含 10000 张图像;测试批次恰好包含从每个类中随机选择的 1000 张图像,训练批次以随机顺序包含其余图像,但某些训练批处理可能包含来自一个类的图像多于另一个类的图像,在它们之间,训练批次正好包含来自每个类的 5000 张图像。
你也可以从这里下载:https://www.cs.toronto.edu/~kriz/cifar.html
下面是数据集中所包含的类以及每个类中的 10 个随机图像。
引入头文件
import os
import time
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
防止网站证书失效、下载失败之类的
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
(作者个人)设置下载目录 task_dir
from config import *
task = 'cifar10'
task_dir = get_task_dir(task)
transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomGrayscale(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = torchvision.datasets.CIFAR10(root=task_dir, train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=100, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root=task_dir, train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
trainset, testset
(Dataset CIFAR10 Number of datapoints: 50000 Root location: /Users/luyi/Documents/nlp_data/cifar10 Split: Train StandardTransform Transform: Compose( RandomHorizontalFlip(p=0.5) RandomGrayscale(p=0.1) ToTensor() Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ), Dataset CIFAR10 Number of datapoints: 10000 Root location: /Users/luyi/Documents/nlp_data/cifar10 Split: Test StandardTransform Transform: Compose( RandomHorizontalFlip(p=0.5) RandomGrayscale(p=0.1) ToTensor() Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ))
trainloader, testloader
(<torch.utils.data.dataloader.DataLoader at 0x7feff0d7ce10>,
<torch.utils.data.dataloader.DataLoader at 0x7feff0d7c6d0>)
import matplotlib.pyplot as plt import numpy as np # functions to show an image def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() # get some random training images dataiter = iter(trainloader) images, labels = next(dataiter) # show images imshow(torchvision.utils.make_grid(images)) # print labels print(' '.join(f'{classes[labels[j]]:5s}' for j in range(batch_size)))
class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16*5*5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self,x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x
定义损失函数、优化器
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
def train(): for epoch in range(20): timestart = time.time() running_loss = 0.0 for i,data in enumerate(trainloader, 0): inputs, labels = data inputs, labels = Variable(inputs), Variable(labels) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 500 == 499: print('[%d ,%5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 500)) running_loss = 0.0 print('-- epoch %d cost %3f sec' % (epoch + 1, time.time()-timestart)) print('==== Finished Training')
保存模型
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
在测试数据上测试网络
dataiter = iter(testloader)
images, labels = dataiter.__next__()
imshow(torchvision.utils.make_grid(images))
print('GroundTruth:', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
加载网络
net = Net()
net.load_state_dict(torch.load(PATH))
outputs = net(images)
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join(f'{classes[predicted[j]]:5s}'
for j in range(4)))
# Predicted: cat ship car ship
查看在整个数据集上的表现
correct = 0
total = 0
# since we're not training, we don't need to calculate the gradients for our outputs
with torch.no_grad():
for data in testloader:
images, labels = data
# calculate outputs by running images through the network
outputs = net(images)
# the class with the highest energy is what we choose as prediction
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy of the network on the 10000 test images: {100 * correct // total} %')
# prepare to count predictions for each class correct_pred = {classname: 0 for classname in classes} total_pred = {classname: 0 for classname in classes} # again no gradients needed with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predictions = torch.max(outputs, 1) # collect the correct predictions for each class for label, prediction in zip(labels, predictions): if label == prediction: correct_pred[classes[label]] += 1 total_pred[classes[label]] += 1 # print accuracy for each class for classname, correct_count in correct_pred.items(): accuracy = 100 * float(correct_count) / total_pred[classname] print(f'Accuracy for class: {classname:5s} is {accuracy:.1f} %')
class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 64, 3, padding=1) self.conv2 = nn.Conv2d(64, 64, 3, padding=1) self.pool1 = nn.MaxPool2d(2, 2) self.bn1 = nn.BatchNorm2d(64) self.relu1 = nn.ReLU() self.conv3 = nn.Conv2d(64, 128, 3, padding=1) self.conv4 = nn.Conv2d(128, 128, 3, padding=1) self.pool2 = nn.MaxPool2d(2, 2, padding=1) self.bn2 = nn.BatchNorm2d(128) self.relu2 = nn.ReLU() self.conv5 = nn.Conv2d(128, 128, 3, padding=1) self.conv6 = nn.Conv2d(128, 128, 3, padding=1) self.conv7 = nn.Conv2d(128, 128, 1, padding=1) self.pool3 = nn.MaxPool2d(2, 2, padding=1) self.bn3 = nn.BatchNorm2d(128) self.relu3 = nn.ReLU() self.conv8 = nn.Conv2d(128, 256, 3, padding=1) self.conv9 = nn.Conv2d(256, 256, 3, padding=1) self.conv10 = nn.Conv2d(256, 256, 1, padding=1) self.pool4 = nn.MaxPool2d(2, 2, padding=1) self.bn4 = nn.BatchNorm2d(256) self.relu4 = nn.ReLU() self.conv11 = nn.Conv2d(256, 512, 3, padding=1) self.conv12 = nn.Conv2d(512, 512, 3, padding=1) self.conv13 = nn.Conv2d(512, 512, 1, padding=1) self.pool5 = nn.MaxPool2d(2, 2, padding=1) self.bn5 = nn.BatchNorm2d(512) self.relu5 = nn.ReLU() self.fc14 = nn.Linear(512 * 4 * 4, 1024) self.drop1 = nn.Dropout2d() self.fc15 = nn.Linear(1024, 1024) self.drop2 = nn.Dropout2d() self.fc16 = nn.Linear(1024, 10) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.pool1(x) x = self.bn1(x) x = self.relu1(x) x = self.conv3(x) x = self.conv4(x) x = self.pool2(x) x = self.bn2(x) x = self.relu2(x) x = self.conv5(x) x = self.conv6(x) x = self.conv7(x) x = self.pool3(x) x = self.bn3(x) x = self.relu3(x) x = self.conv8(x) x = self.conv9(x) x = self.conv10(x) x = self.pool4(x) x = self.bn4(x) x = self.relu4(x) x = self.conv11(x) x = self.conv12(x) x = self.conv13(x) x = self.pool5(x) x = self.bn5(x) x = self.relu5(x) # print(" x shape ",x.size()) x = x.view(-1, 512 * 4 * 4) x = F.relu(self.fc14(x)) x = self.drop1(x) x = F.relu(self.fc15(x)) x = self.drop2(x) x = self.fc16(x) return x
def train_sgd(model, device): optimizer = optim.SGD(model.parameters(), lr=0.01) path = 'mnist_vgg_weights.tar' initepoch = 0 if os.path.exists(path) is not True: loss = nn.CrossEntropyLoss() else: # 如果存在已保存的权重,则加载 checkpoint = torch.load(path) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) initepoch = checkpoint['epoch'] loss = checkpoint['loss'] for epoch in range(initepoch, 20): # loop over the dataset multiple times timestart = time.time() running_loss = 0.0 total = 0 correct = 0 for i, data in enumerate(trainloader, 0): # get the inputs inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) l = loss(outputs, labels) l.backward() optimizer.step() running_loss += l.item() if i % 500 == 499: print('[%d, %5d] loss: %.4f' % (epoch, i, running_loss / 500)) running_loss = 0.0 _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the %d tran images: %.3f %%' % (total, 100.0 * correct / total)) total = 0 correct = 0 torch.save({'epoch': epoch, 'model_state_dict': net.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': loss }, path) print('epoch %d cost %3f sec' % (epoch, time.time() - timestart)) print('Finished Training')
def test(model, device):
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %.3f %%' % (100.0 * correct / total))
def classify(self, device): class_correct = list(0. for i in range(10)) class_total = list(0. for i in range(10)) for data in testloader: images, labels = data images, labels = images.to(device), labels.to(device) outputs = self(images) _, predicted = torch.max(outputs.data, 1) c = (predicted == labels).squeeze() for i in range(4): label = labels[i] class_correct[label] += c[i] class_total[label] += 1 for i in range(10): print('Accuracy of %5s : %2d %%' % (classes[i], 100 * class_correct[i] / class_total[i]))
训练
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = Net()
model
model = model.to(device)
train_sgd(model, device)
test(model, device)
classify(device)
2022-12-11
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。