赞
踩
代码比较简单,记录一下免得以后要再copy一次。
首先需要在modeling_baichuan.py的BaichuanForCausalLM类中添加get_outputs函数
- def get_outputs(self, tokenizer, messages: List[dict], stream=False,
- generation_config: Optional[GenerationConfig]=None):
- generation_config = generation_config or self.generation_config
- input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
- outputs = self.generate(input_ids, generation_config=generation_config)
- return outputs
然后运行下面的代码计算,注意,因为我显卡空间不够,所以是半精度运行。
- import os
- import torch
- import platform
- from colorama import Fore, Style
- from transformers import AutoModelForCausalLM, AutoTokenizer
- from transformers.generation.utils import GenerationConfig
- import time
-
-
- print("init model ...")
- model = AutoModelForCausalLM.from_pretrained(
- "/home/Datasets/large_models/all_pt_model/baichuan2_13b_20240102",
- torch_dtype=torch.float16,
- device_map="auto",
- trust_remote_code=True
- )
-
- model.generation_config = GenerationConfig.from_pretrained(
- "/home/Datasets/large_models/all_pt_model/baichuan2_13b_20240102"
- )
- tokenizer = AutoTokenizer.from_pretrained(
- "/home/Datasets/large_models/all_pt_model/baichuan2_13b_20240102",
- use_fast=False,
- trust_remote_code=True
- )
-
- messages = []
- outs = []
- generate_tokens = []
- query = ["怎么创建线程", "什么是信号量,给我创建信号量的示例", "发送邮件的示例", "如何查找设备", "你好,介绍一下自己,要一千字", "给我一个创建线程的代码示例", "详细介绍一下rt-thread", "rt-thread的历史发展", "创建设备的代码示例", ]
-
- for q in query:
- messages = [{"role": "user", "content": q}]
- t1 = time.time()
- outputs = model.get_outputs(tokenizer, messages)
- t2 = time.time()
- outs.append(outputs)
- generate_tokens.append(len(outputs[0]) / (t2 - t1))
-
- print(generate_tokens)
-
-
- print(sum(generate_tokens)/len(generate_tokens))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。