赞
踩
最近因为最人脸表情识别,提取的gabor特征太多了,所以需要用PCA进行对提取的特征进行降维。
本来最早的时候我没有打算对提取的gabor特征进行降维,但是如果一个图像时64*64,那么使用五个尺度八个方向的gabor滤波器进行滤波,这样提取的特征足足有64*64*5*8这么多,如果图像稍微大一点,比如128*128的图像,那么直接提取的特征就会几十万,所以不降维的话直接用SVM训练分类器是非常困难的。
所以在这段时间我就学习了一下PCA降维的基本原理和使用方法,网上给出的资料都比较乱,而且很不清楚,经过这几天的学习和测试,终于把调理弄清楚了,给大家分享一下,下面只是我对于PCA的个人理解,肯定有不对的地方,还请各位大牛多多指教。
下面先给出一下PCA的资料地址,都是我收集的:
http://hi.baidu.com/yicomrdztxbeiwd/item/913f28c05cf7ebc4994aa06f
http://blog.sciencenet.cn/blog-265205-544681.html
http://blog.csdn.net/mpbchina/article/details/7384425
http://blog.sina.com.cn/s/blog_6833a4df0100pvk7.html
http://stackoverflow.com/questions/4991343/matlab-principal-component-analysis-eigenvalues-order
http://stackoverflow.com/questions/10400230/what-is-score-in-princomp
http://www.mathworks.com/matlabcentral/newsreader/view_thread/152608
http://stats.stackexchange.com/questions/27572/matlab-princomp-latent
http://www.nlpca.org/pca-principal-component-analysis-matlab.html
http://www.matlabsky.com/thread-11751-1-1.html
http://stackoverflow.com/questions/10818718/principal-component-analysis
http://www.mathworks.cn/cn/help/stats/princomp.html
http://www.mathworks.cn/cn/help/stats/pca.html#bti6n7k-2
http://lovelittlebean.blog.163.com/blog/static/116582186201181213911729/
http://www.ilovematlab.cn/thread-54493-1-1.html
http://www.ilovematlab.cn/forum.php?mod=viewthread&tid=146626
http://www.ilovematlab.cn/forum.php?mod=viewthread&tid=204069
http://www.ilovematlab.cn/forum.php?mod=viewthread&tid=54600
http://search.discuz.qq.com/s/aa8585553/princomp+%E9%99%8D%E7%BB%B4.html
http://www.ilovematlab.cn/thread-68796-1-1.html
http://www.ilovematlab.cn/thread-209229-1-1.html
http://www.ilovematlab.cn/thread-209229-1-1.html
http://blog.sina.com.cn/s/blog_61c0518f0100f4mi.html
http://blog.csdn.net/haitao111313/article/details/7875392
http://media.cs.tsinghua.edu.cn/~ahz/digitalimageprocess/chapter11/chapt11_ahz.htm
http://hi.baidu.com/845777018/item/7438e555df1138404fff2011
http://en.wikipedia.org/wiki/Principal_component_analysis
http://baike.baidu.com/view/852194.htm
http://wenku.baidu.com/view/bd9284fcfab069dc51220107.html
http://wenku.baidu.com/view/c0bde56da98271fe910ef9b8.html
http://wenku.baidu.com/view/9f69930790c69ec3d5bb75d3.html
http://www.ilovematlab.cn/thread-54600-1-1.html
http://www.cnblogs.com/sunwufan/archive/2011/08/31/2159952.html
http://zhidao.baidu.com/question/416895922.html
上面的网址都是一些pca原理啊,实现什么的介绍。
具体的PCA的算法的理论基础呢,我这里就不详细说了,因为我也没有看具体详细,所以如果想要彻底的弄明白PCA的工作原来,还是请到wiki上看吧,写的非常清晰,我因为临时用一下,就写个大致的原理就可以了。
PCA的原理就是将原来的样本数据投影到一个新的空间中,相当于我们在矩阵分析里面学习的将一组矩阵映射到另外的坐标系下。通过一个转换坐标,也可以理解成把一组坐标转换到另外一组坐标系下,但是在新的坐标系下,表示原来的原本不需要那么多的变量,只需要原来样本的最大的一个线性无关组的特征值对应的空间的坐标即可。
比如,原来的样本是30*1000000的维数,就是说我们有30个样本,每个样本有1000000个特征点,这个特征点太多了,我们需要对这些样本的特征点进行降维。那么在降维的时候会计算一个原来样本矩阵的协方差矩阵,这里就是1000000*1000000,当然,这个矩阵太大了,计算的时候有其他的方式进行处理,这里只是讲解基本的原理,然后通过这个1000000*1000000的协方差矩阵计算它的特征值和特征向量,最后获得具有最大特征值的特征向量构成转换矩阵。比如我们的前29个特征值已经能够占到所有特征值的99%以上,那么我们只需要提取前29个特征值对应的特征向量即可。这样就构成了一个1000000*29的转换矩阵,然后用原来的样本乘以这个转换矩阵,就可以得到原来的样本数据在新的特征空间的对应的坐标。30*1000000 * 1000000*29 = 30 *29, 这样原来的训练样本每个样本的特征值的个数就降到了29个。
一般来说,PCA降维后的每个样本的特征的维数,不会超过训练样本的个数,因为超出的特征是没有意义的。
下面是百度百科中对pca降维的一段解释,还是挺清晰的:
“对于一个训练集,100个对象模板,特征是10维,那么它可以建立一个100*10的矩阵,作为样本。求这个样本的协方差矩阵,得到一个10*10的协方差矩阵,然后求出这个协方差矩阵的特征值和特征向量,应该有10个特征值和特征向量,我们根据特征值的大小,取前四个特征值所对应的特征向量,构成一个10*4的矩阵,这个矩阵就是我们要求的特征矩阵,100*10的样本矩阵乘以这个10*4的特征矩阵,就得到了一个100*4的新的降维之后的样本矩阵,每个特征的维数下降了。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。