当前位置:   article > 正文

yolov8上使用gpu教程_yolov8.如何用gpu

yolov8.如何用gpu

yolov8上使用gpu教程

安装Cuda和Cudnn

1.查看支持的cuda版本,并去官网下载。

nvidia-smi
  • 1

在这里插入图片描述
2.网址:https://developer.nvidia.com/cuda-toolkit-archive
在这里插入图片描述
在这里插入图片描述
3.安装细节
安装的前提基础是,有vs的C++环境。我电脑有vs2019的C++环境。
在这里插入图片描述
4.取消勾选,这里就借用了其他博主的一些图。
附链接
一开始没有取消勾选,会报错。
在这里插入图片描述
选择自定义
在这里插入图片描述
在选择组件的时候,将CUDA中的Nsight VSE和Visual Studio Integration取消勾选,后选择下一步,即可安装成功。
在这里插入图片描述
5.查看安装成功与否。
在这里插入图片描述
6.安装cudnn。参考一个博主的文章:链接
下载cudnn,先注册账号登录。
选择自己的合适版本。
下载地址:https://developer.nvidia.com/rdp/cudnn-download
在这里插入图片描述
7.解压
cudnn压缩包解压如图所示
在这里插入图片描述
找到cuda安装目录,将这三个文件夹下的文件全部移到cuda对应的文件夹下。
在这里插入图片描述
8.添加环境变量
找到安装目录,将这两个添加进去。
在这里插入图片描述
9.测试cudnn是否安装成功。
cd到安装目录下的 …\extras\demo_suite,然后分别执行bandwidthTest.exe和deviceQuery.exe(进到目录后需要直接输“bandwidthTest.exe”和“deviceQuery.exe”),得到下图:
在这里插入图片描述
在这里插入图片描述
至此,安装结束。

yolov8上使用gpu

1.新创建conda虚拟环境,yolov8_conda。

conda create -n yolov8_conda pyhton=3.10
  • 1

2.别忘了pycharm中也要切换刚创建的环境
在这里插入图片描述
3.进入虚拟环境,下载安装yolov8所需依赖

activate yolov8_conda
  • 1
 pip install ultralytics
  • 1

4.下载对应gpu版本的torch
在这里插入图片描述
我这里cuda版本是11.7
去pytorch官网,下载对应的版本。最好下载cu+的,pip命令的。因为下其他的我不知道为什么失败了。
在这里插入图片描述
5.测试gpu,为True即可。

import torch

# 检查torch是否有CUDA支持,即是否能用GPU
print(torch.cuda.is_available())

# 如果CUDA可用,它还会打印出当前默认的CUDA设备(通常是第一个GPU)
if torch.cuda.is_available():
    print(torch.cuda.get_device_name(0))
print(torch.version.cuda)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/162235
推荐阅读
相关标签
  

闽ICP备14008679号