当前位置:   article > 正文

填充模式:PKCS#5/PKCS7_pkcs5和pkcs7

pkcs5和pkcs7

填充模式:PKCS#5/PKCS7

首先我们要了解下啥是填充模式。

在分组加密算法中(例如DES),我们首先要将原文进行分组,然后每个分组进行加密,然后组装密文。

其中有一步是分组。

如何分组?

假设我们现在的数据长度是24字节,BlockSize是8字节,那么很容易分成3组,一组8字节;

考虑过一个问题没,如果现有的待加密数据不是BlockSize的整数倍,那该如何分组?

例如,有一个17字节的数据,BlockSize是8字节,怎么分组?

我们可以对原文进行填充(padding),将其填充到8字节的整数倍!

假设使用PKCS#5进行填充(以下都是以PKCS#5为示例),BlockSize是8字节(64bit):

待加密数据原长度为1字节:
0x41
填充后:
0x410x070x070x070x070x070x070x07
  • 1
  • 2
  • 3
  • 4
待加密数据原长度为2字节:
0x410x41
填充后:
0x410x410x060x060x060x060x060x06
  • 1
  • 2
  • 3
  • 4
待加密数据原长度为3字节:
0x410x410x41
填充后:
0x410x410x410x050x050x050x050x05
  • 1
  • 2
  • 3
  • 4
待加密数据原长度为4字节:
0x410x410x410x41
填充后:
0x410x410x410x410x040x040x040x04
  • 1
  • 2
  • 3
  • 4
待加密数据原长度为5字节:
0x410x410x410x410x41
填充后:
0x410x410x410x410x410x030x030x03
  • 1
  • 2
  • 3
  • 4
待加密数据原长度为6字节:
0x410x410x410x410x410x41
填充后:
0x410x410x410x410x410x410x020x02
  • 1
  • 2
  • 3
  • 4
待加密数据原长度为7字节:
0x410x410x410x410x410x410x41
填充后:
0x410x410x410x410x410x410x410x01
  • 1
  • 2
  • 3
  • 4
待加密数据原长度为8字节:
0x410x410x410x410x410x410x410x41
填充后:
0x410x410x410x410x410x410x410x410x080x080x080x080x080x080x080x08
  • 1
  • 2
  • 3
  • 4

假设待加密数据长度为x,那么将会在后面padding的字节数目为8-(x%8),每个padding的字节值是8-(x%8)。

特别地,当待加密数据长度x恰好是8的整数倍,也是要在后面多增加8个字节,每个字节是0x08。

给出一个PKCS#5的实现:

static size_t padding(unsigned char *src, size_t srcLen)
{
    // PKCS#5
    size_t paddNum = 8 - srcLen % 8;

    for (int i = 0; i < paddNum; ++i) {
        src[srcLen + i] = paddNum;
    }   
    return srcLen + paddNum;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

思考一个问题:

为啥当为整数倍时,还是要多增加8个0x08?

因为解密的需要。

假设当x是8的整数倍时,不多填充8个0x08:

当解密后时,我看到了解密后的数据的末尾的最后一个字节,这个字节恰好是0x01,那你说,这个字节是填充上去的呢?

还是实际的数据呢?

类似的例子比如:解密后末尾的两个字节恰好都是0x02,你说是填充上去的还是原来实际的明文数据?

如果我们不论是不是8的整数倍,都进行填充,那么显然可以统一进行处理!

有点绕…可以仔细想想。


PKCS#5以及PKCS#7的区别

网上关于这个问题有很多讨论。

以下是我从网上找的资料:

wiki:

Padding is in whole bytes. The value of each added byte is the number of bytes that are added, i.e. N bytes, each of value N are added. The number of bytes added will depend on the block boundary to which the message needs to be extended.

The padding will be one of:

01
02 02
03 03 03
04 04 04 04
05 05 05 05 05
06 06 06 06 06 06
etc.

This padding method (as well as the previous two) is well-defined if and only if N is less than 256.

Example: In the following example the block size is 8 bytes and padding is required for 4 bytes

... | DD DD DD DD DD DD DD DD | DD DD DD DD 04 04 04 04 |

If the original data is an integer multiple of N bytes, then an extra block of bytes with value N is added. This is necessary so the deciphering algorithm can determine with certainty whether the last byte of the last block is a pad byte indicating the number of padding bytes added or part of the plaintext message. Consider a plaintext message that is an integer multiple of N bytes with the last byte of plaintext being 01. With no additional information, the deciphering algorithm will not be able to determine whether the last byte is a plaintext byte or a pad byte. However, by adding N bytes each of value N after the 01 plaintext byte, the deciphering algorithm can always treat the last byte as a pad byte and strip the appropriate number of pad bytes off the end of the ciphertext; said number of bytes to be stripped based on the value of the last byte.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

其实最核心的是:

PKCS#5在填充方面,是PKCS#7的一个子集:

PKCS#5只是对于8字节(BlockSize=8)进行填充,填充内容为0x01-0x08;

但是PKCS#7不仅仅是对8字节填充,其BlockSize范围是1-255字节。

所以,PKCS#5可以向上转换为PKCS#7,但是PKCS#7不一定可以转换到PKCS#5(用PKCS#7填充加密的密文,用PKCS#5解出来是错误的)。

PKCS#5 padding is identical to PKCS#7 padding, except that it has only been defined for block ciphers that use a 64-bit (8 byte) block size. In practice the two can be used interchangeably
  • 1

再给出一个老外的答案:

The difference between the PKCS#5 and PKCS#7 padding mechanisms is the block size; PKCS#5 padding is defined for 8-byte block sizes, PKCS#7 padding would work for any block size from 1 to 255 bytes.

This is the definition of PKCS#5 padding (6.2) as defined in the RFC:

The padding string PS shall consist of 8 - (||M|| mod 8) octets all having value 8 - (||M|| mod 8).

The RFC that contains the PKCS#7 standard is the same except that it allows block sizes up to 255 bytes in size (10.3 note 2):

For such algorithms, the method shall be to pad the input at the trailing end with k - (l mod k) octets all having value k - (l mod k), where l is the length of the input.

So fundamentally PKCS#5 padding is a subset of PKCS#7 padding for 8 byte block sizes. Hence, PKCS#5 padding can not be used for AES. PKCS#5 padding was only defined with (triple) DES operation in mind.

Many cryptographic libraries use an identifier indicating PKCS#5 or PKCS#7 to define the same padding mechanism. The identifier should indicate PKCS#7 if block sizes other than 8 are used within the calculation. Some cryptographic libraries such as the SUN provider in Java indicate PKCS#5 where PKCS#7 should be used - "PKCS5Padding" should have been "PKCS7Padding". This is a legacy from the time that only 8 byte block ciphers such as (triple) DES symmetric cipher were available.

Note that neither PKCS#5 nor PKCS#7 is a standard created to describe a padding mechanism. The padding part is only a small subset of the defined functionality. PKCS#5 is a standard for Password Based Encryption or PBE, and PKCS#7 defines the Cryptographic Message Syntax or CMS.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

资料来源:

1.https://en.wikipedia.org/wiki/Padding_(cryptography)

2.https://en.wikipedia.org/wiki/PKCS

3.https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

4.https://crypto.stackexchange.com/questions/9043/what-is-the-difference-between-pkcs5-padding-and-pkcs7-padding

5.http://www.cnblogs.com/ryq2014/p/6379153.html

6.http://blog.csdn.net/zsy19881226/article/details/46928177

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/181437
推荐阅读
相关标签
  

闽ICP备14008679号