当前位置:   article > 正文

模型压缩(一)通道剪枝-BN层

通道剪枝

论文:https://arxiv.org/pdf/1708.06519.pdf

BN层中缩放因子γ与卷积层中的每个通道关联起来。在训练过程中对这些比例因子进行稀疏正则化,以自动识别不重要的通道。缩放因子值较小的通道(橙色)将被修剪(左侧)。剪枝后,获得了紧凑的模型(右侧),然后对其进行微调,以达到与正常训练的全网络相当(甚至更高)的精度。

BN层原理:

 归一化化后,BN层服从正态分布,当γ,β趋于0时,经过阈值分离,输出为0,与之连接的卷积层输入为0。

剪枝流程:

 

剪枝原理:

在BN层网络中加入稀疏因子,训练使得BN层稀疏化,对稀疏训练的后的模型中所有BN层权重进行统计排序,获取指定保留BN层数量即取得排序后权重阈值thres。遍历模型中的BN层权重,制作各层mask(权重>thres值为1,权重<thres值为0)。剪枝操作,根据各层的mask构建新模型结构(各层保留的通道数),获取BN层权重*mask非零值的索引,非零索引对应的原始conv层、BN层、linear层各通道的权重、偏置等值赋值给新模型各层。加载剪枝后模型,进行fine-tune。

如下实现一个简单的网络剪枝。

1、自定义一个网络

对网络进行

  1. import torch
  2. import torch.nn as nn
  3. import numpy as np
  4. class net(nn.Module):
  5. def __init__(self,cfg=None):
  6. super(net, self).__init__()
  7. if cfg:
  8. self.features=self.make_layer(cfg)
  9. self.linear = nn.Linear(cfg[2], 2)
  10. else:
  11. layers=[]
  12. layers+=[nn.Conv2d(3,64,7,2,1,bias=False),
  13. nn.BatchNorm2d(64),
  14. nn.ReLU(inplace=True)]
  15. layers += [
  16. nn.Conv2d(64,128,3,2,1,bias=False),
  17. nn.BatchNorm2d(128),
  18. nn.ReLU(inplace=True)
  19. ]
  20. layers += [
  21. nn.Conv2d(128, 256, 3, 2, 1,bias=False),
  22. nn.BatchNorm2d(256),
  23. nn.ReLU(inplace=True)
  24. ]
  25. layers += [nn.AvgPool2d(2)]
  26. self.features=nn.Sequential(*layers)
  27. self.linear=nn.Linear(256,2)
  28. def make_layer(self,cfg):
  29. layers=[]
  30. layers += [nn.Conv2d(3, cfg[0], 7, 2, 1, bias=False),
  31. nn.BatchNorm2d(cfg[0]),
  32. nn.ReLU(inplace=True)]
  33. layers += [
  34. nn.Conv2d(cfg[0], cfg[1], 3, 2, 1, bias=False),
  35. nn.BatchNorm2d(cfg[1]),
  36. nn.ReLU(inplace=True)
  37. ]
  38. layers += [
  39. nn.Conv2d(cfg[1], cfg[2], 3, 2, 1, bias=False),
  40. nn.BatchNorm2d(cfg[2]),
  41. nn.ReLU(inplace=True)
  42. ]
  43. layers += [nn.AvgPool2d(2)]
  44. return nn.Sequential(*layers)
  45. def forward(self,x):
  46. x=self.features(x)
  47. # print(x.shape)
  48. x=x.view(x.size(0),-1)
  49. x=self.linear(x)
  50. return x

网络参数信息:

  1. ----------------------------------------------------------------
  2. Layer (type) Output Shape Param #
  3. ================================================================
  4. Conv2d-1 [1, 64, 8, 8] 9,408
  5. BatchNorm2d-2 [1, 64, 8, 8] 128
  6. ReLU-3 [1, 64, 8, 8] 0
  7. Conv2d-4 [1, 128, 4, 4] 73,728
  8. BatchNorm2d-5 [1, 128, 4, 4] 256
  9. ReLU-6 [1, 128, 4, 4] 0
  10. Conv2d-7 [1, 256, 2, 2] 294,912
  11. BatchNorm2d-8 [1, 256, 2, 2] 512
  12. ReLU-9 [1, 256, 2, 2] 0
  13. AvgPool2d-10 [1, 256, 1, 1] 0
  14. Linear-11 [1, 2] 514
  15. ================================================================
  16. Total params: 379,458
  17. Trainable params: 379,458
  18. Non-trainable params: 0
  19. ----------------------------------------------------------------
  20. Input size (MB): 0.00
  21. Forward/backward pass size (MB): 0.17
  22. Params size (MB): 1.45
  23. Estimated Total Size (MB): 1.62

2、稀疏训练

在BN层中各权重加入稀疏因子。

  1. def updateBN(model,s=0.0001):
  2. for m in model.modules():
  3. if isinstance(m,nn.BatchNorm2d):
  4. m.weight.grad.data.add_(s*torch.sign(m.weight.data))
  5. if __name__=="__main__":
  6. model=net()
  7. # from torchsummary import summary
  8. # print(summary(model,(3,20,20),1))
  9. # x = torch.rand((1, 3, 20, 20))
  10. # print(model(x))
  11. optimer=torch.optim.Adam(model.parameters())
  12. loss_fn=torch.nn.CrossEntropyLoss()
  13. for e in range(100):
  14. x = torch.rand((1, 3, 20, 20))
  15. y=torch.tensor(np.random.randint(0,2,(1))).long()
  16. out=model(x)
  17. loss=loss_fn(out,y)
  18. optimer.zero_grad()
  19. loss.backward()
  20. #BN权重稀疏化
  21. updateBN(model)
  22. optimer.step()
  23. torch.save(model.state_dict(),"net.pth")

3、剪枝

稀疏训练后的模型,解析。

  1. import net
  2. import torch
  3. import torch.nn as nn
  4. import numpy as np
  5. model = net.net()
  6. #加载稀疏训练的模型
  7. model.load_state_dict(torch.load("net.pth"))
  8. total = 0 # 统计所有BN层的参数量
  9. for m in model.modules():
  10. if isinstance(m, nn.BatchNorm2d):
  11. # print(m.weight.data.shape[0]) # 每个BN层权重w参数量:64/128/256
  12. # print(m.weight.data)
  13. total += m.weight.data.shape[0]
  14. print("所有BN层总weight数量:",total)
  15. bn_data=torch.zeros(total)
  16. index=0
  17. for m in model.modules():
  18. #将各个BN层的参数值拷贝到bn中
  19. if isinstance(m,nn.BatchNorm2d):
  20. size=m.weight.data.shape[0]
  21. bn_data[index:(index+size)]=m.weight.data.abs().clone()
  22. index=size
  23. #对bn中的weight值排序
  24. data,id=torch.sort(bn_data)
  25. percent=0.7#保留70%的BN层通道数
  26. thresh_index=int(total*percent)
  27. thresh=data[thresh_index]#取bn排序后的第thresh_index索引值为bn权重的截断阈值
  28. #制作mask
  29. pruned_num=0#统计BN层剪枝通道数
  30. cfg=[]#统计保存通道数
  31. cfg_mask=[]#BN层权重矩阵,剪枝的通道记为0,未剪枝通道记为1
  32. for k,m in enumerate(model.modules()):
  33. if isinstance(m,nn.BatchNorm2d):
  34. weight_copy=m.weight.data.abs().clone()
  35. # print(weight_copy)
  36. mask=weight_copy.gt(thresh).float()#阈值分离权重
  37. # print(mask)
  38. # exit()
  39. pruned_num+=mask.shape[0]-torch.sum(mask)#
  40. # print(pruned_num)
  41. m.weight.data.mul_(mask)#更新BN层的权重,剪枝通道的权重值为0
  42. m.bias.data.mul_(mask)
  43. cfg.append(int(torch.sum(mask)))#记录未被剪枝的通道数量
  44. cfg_mask.append(mask.clone())
  45. print("layer index:{:d}\t total channel:{:d}\t remaining channel:{:d}".format(k,mask.shape[0],int(torch.sum(mask))))
  46. elif isinstance(m,nn.AvgPool2d):
  47. cfg.append("A")
  48. pruned_ratio=pruned_num/total
  49. print("剪枝通道占比:",pruned_ratio)
  50. print(cfg)
  51. newmodel=net.net(cfg)
  52. # print(newmodel)
  53. # from torchsummary import summary
  54. # print(summary(newmodel,(3,20,20),1))
  55. layer_id_in_cfg=0#层
  56. start_mask=torch.ones(3)
  57. end_mask=cfg_mask[layer_id_in_cfg]#第一个BN层对应的mask
  58. # print(cfg_mask)
  59. # print(end_mask)
  60. for(m0,m1)in zip(model.modules(),newmodel.modules()):#以最少的为准
  61. if isinstance(m0,nn.BatchNorm2d):
  62. # idx1=np.squeeze(np.argwhere(np.asarray(end_mask.numpy())))#获得mask中非零索引即未被减掉的序号
  63. # print(idx1)
  64. # exit()
  65. # idx1=np.array([1])
  66. # # print(idx1)
  67. if idx1.size==1:
  68. idx1=np.resize(idx1,(1,))
  69. # print(idx1)
  70. # exit()
  71. #将旧模型的参数值拷贝到新模型中
  72. m1.weight.data=m0.weight.data[idx1.tolist()].clone()
  73. m1.bias.data=m0.bias.data[idx1.tolist()].clone()
  74. m1.running_mean=m0.running_mean[idx1.tolist()].clone()
  75. m1.running_var = m0.running_var[idx1.tolist()].clone()
  76. layer_id_in_cfg+=1#下一个mask
  77. start_mask=end_mask.clone()
  78. if layer_id_in_cfg<len(cfg_mask):
  79. end_mask=cfg_mask[layer_id_in_cfg]
  80. elif isinstance(m0,nn.Conv2d):#输入
  81. idx0=np.squeeze(np.argwhere(np.asarray(start_mask.numpy())))#输入非0索引
  82. idx1=np.squeeze(np.argwhere(np.asarray(end_mask.numpy())))#输出非0索引
  83. if idx0.size==1:
  84. idx0=np.resize(idx0,(1,))
  85. if idx1.size==1:
  86. idx1=np.resize(idx1,(1,))
  87. w1=m0.weight.data[:,idx0.tolist(),:,:].clone()
  88. w1=w1[idx1.tolist(),:,:,:].clone()
  89. m1.weight.data=w1.clone()
  90. elif isinstance(m0,nn.Linear):
  91. idx0 = np.squeeze(np.argwhere(np.asarray(start_mask.numpy()))) # 输入非0索引
  92. if idx0.size==1:
  93. idx0=np.resize(idx0,(1,))
  94. m1.weight.data=m0.weight.data[:,idx0].clone()
  95. m1.bias.data=m0.bias.data.clone()
  96. torch.save(newmodel.state_dict(),"prune_net.pth")
  97. print(newmodel)

新模型结构:

  1. 所有BN层总weight数量: 448
  2. layer index:3 total channel:64 remaining channel:29
  3. layer index:6 total channel:128 remaining channel:56
  4. layer index:9 total channel:256 remaining channel:75
  5. 剪枝通道占比: tensor(0.6429)
  6. [29, 56, 75, 'A']
  7. net(
  8. (features): Sequential(
  9. (0): Conv2d(3, 29, kernel_size=(7, 7), stride=(2, 2), padding=(1, 1), bias=False)
  10. (1): BatchNorm2d(29, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  11. (2): ReLU(inplace=True)
  12. (3): Conv2d(29, 56, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
  13. (4): BatchNorm2d(56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  14. (5): ReLU(inplace=True)
  15. (6): Conv2d(56, 75, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
  16. (7): BatchNorm2d(75, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  17. (8): ReLU(inplace=True)
  18. (9): AvgPool2d(kernel_size=2, stride=2, padding=0)
  19. )
  20. (linear): Linear(in_features=75, out_features=2, bias=True)
  21. )
  22. ----------------------------------------------------------------
  23. Layer (type) Output Shape Param #
  24. ================================================================
  25. Conv2d-1 [1, 29, 8, 8] 4,263
  26. BatchNorm2d-2 [1, 29, 8, 8] 58
  27. ReLU-3 [1, 29, 8, 8] 0
  28. Conv2d-4 [1, 56, 4, 4] 14,616
  29. BatchNorm2d-5 [1, 56, 4, 4] 112
  30. ReLU-6 [1, 56, 4, 4] 0
  31. Conv2d-7 [1, 75, 2, 2] 37,800
  32. BatchNorm2d-8 [1, 75, 2, 2] 150
  33. ReLU-9 [1, 75, 2, 2] 0
  34. AvgPool2d-10 [1, 75, 1, 1] 0
  35. Linear-11 [1, 2] 152
  36. ================================================================
  37. Total params: 57,151
  38. Trainable params: 57,151
  39. Non-trainable params: 0
  40. ----------------------------------------------------------------
  41. Input size (MB): 0.00
  42. Forward/backward pass size (MB): 0.07
  43. Params size (MB): 0.22
  44. Estimated Total Size (MB): 0.29
  45. ----------------------------------------------------------------

模型大小由1.45m压缩到230k,压缩率:84%

4、fine-tune训练

  1. newmodel.load_state_dict(torch.load("prune_net.pth"))
  2. #
  3. optimer=torch.optim.Adam(model.parameters())
  4. loss_fn=torch.nn.CrossEntropyLoss()
  5. for e in range(100):
  6. x = torch.rand((1, 3, 20, 20))
  7. y=torch.tensor(np.random.randint(0,2,(1))).long()
  8. out=newmodel(x)
  9. loss=loss_fn(out,y)
  10. optimer.zero_grad()
  11. loss.backward()
  12. optimer.step()
  13. torch.save(newmodel.state_dict(),"prune_net.pth")

以上过程仅供参考。

 参考:GitHub - foolwood/pytorch-slimming: Learning Efficient Convolutional Networks through Network Slimming, In ICCV 2017.

Network Slimming——有效的通道剪枝方法(Channel Pruning)_Law-Yao的博客-CSDN博客_通道剪枝算法

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/190731
推荐阅读
相关标签
  

闽ICP备14008679号