当前位置:   article > 正文

TOP 100值得读的图神经网络----架构_discriminative graph convolutional networks for se

discriminative graph convolutional networks for semi-supervised node classif

Top100值得一读的图神经网络 (qq.com)https://mp.weixin.qq.com/s?__biz=MzIyNDY5NjEzNQ==&mid=2247491631&idx=1&sn=dfa36e829a84494c99bb2d4f755717d6&chksm=e809a207df7e2b1117578afc86569fa29ee62eb883fd35428888c0cc0be750faa5ef091f9092&mpshare=1&scene=23&srcid=1026NUThrKm2Vioj874F3gqS&sharer_sharetime=1635227630762&sharer_shareid=80f244b289da8c80b67c915b10efd0a8#rd清华大学的Top 100 GNN papers,其中分了十个方向,每个方向10篇

本文是对架构方向10篇的阅读笔记:

  1. Semi-Supervised Classification with Graph Convolutional Networks. Thomas N. Kipf, Max Welling. NeuIPS'17.
  2. Graph Attention Networks. Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, Yoshua Bengio. ICLR'18.
  3. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. NeuIPS'16.
  4. Predict then Propagate: Graph Neural Networks meet Personalized PageRank. Johannes Klicpera, Aleksandar Bojchevski, Stephan Günnemann. ICLR'19.
  5. Gated Graph Sequence Neural Networks. Li, Yujia N and Tarlow, Daniel and Brockschmidt, Marc and Zemel, Richard. ICLR'16.
  6. Inductive Representation Learning on Large Graphs. William L. Hamilton, Rex Ying, Jure Leskovec. NeuIPS'17.
  7. Deep Graph Infomax. Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, R Devon Hjelm. ICLR'19.
  8. Representation Learning on Graphs with Jumping Knowledge Networks. Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, Stefanie Jegelka. ICML'18.
  9. DeepGCNs: Can GCNs Go as Deep as CNNs?. Guohao Li, Matthias Müller, Ali Thabet, Bernard Ghanem. ICCV'19.
  10. DropEdge: Towards Deep Graph Convolutional Networks on Node Classification. Yu Rong, Wenbing Huang, Tingyang Xu, Junzhou Huang. ICLR'20

目录

一、GCN 基于图卷积网络的半监督分类  SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS

二、GAT 图注意力网络 Graph Attention Networks

三、具有快速局部谱滤波的图上的卷积神经网络 Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

四、预测后传播:图神经网络满足个性化PageRank PREDICT THEN PROPAGATE: GRAPH NEURAL NETWORKS MEET PERSONALIZED PAGERANK

五、门控图序列神经网络 GATED GRAPH SEQUENCE NEURAL NETWORKS

六、GraphSAGE大型图的归纳表示学习 Inductive Representation Learning on Large Graphs

七、DGI DEEP GRAPH INFOMAX          

八、JK Representation Learning on Graphs with Jumping Knowledge Networks         

九、DeepGCNs: Can GCNs Go as Deep as CNNs?           

十、DROPEDGE: TOWARDS DEEP GRAPH CONVOLUTIONAL NETWORKS ON NODE CLASSIFICATION

             


一、GCN 基于图卷积网络的半监督分类  SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS

提出了一种全新的基于图结构的半监督学习方法,使用谱图理卷积的局域近似一阶进行卷积,模型在图的边数中线性缩放,并学习同时编码局部图结构和节点特征的隐含层表示

1 INTRODUCTION

  • 图半监督学习:对图(如引文网络)中的节点(如文档)进行分类的问题,其中标签只对一小部分节点可用
  • 传统的拉普拉斯正则项:
    • 依赖于图中连接的节点可能共享相同标签的假设。然而,这种假设可能会限制建模能力,因为图的边不一定需要编码节点相似性,但可以包含附加信息
  • 本文改进:
推荐阅读
相关标签