赞
踩
Top100值得一读的图神经网络 (qq.com)https://mp.weixin.qq.com/s?__biz=MzIyNDY5NjEzNQ==&mid=2247491631&idx=1&sn=dfa36e829a84494c99bb2d4f755717d6&chksm=e809a207df7e2b1117578afc86569fa29ee62eb883fd35428888c0cc0be750faa5ef091f9092&mpshare=1&scene=23&srcid=1026NUThrKm2Vioj874F3gqS&sharer_sharetime=1635227630762&sharer_shareid=80f244b289da8c80b67c915b10efd0a8#rd清华大学的Top 100 GNN papers,其中分了十个方向,每个方向10篇
本文是对架构方向10篇的阅读笔记:
目录
一、GCN 基于图卷积网络的半监督分类 SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS
二、GAT 图注意力网络 Graph Attention Networks
三、具有快速局部谱滤波的图上的卷积神经网络 Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
四、预测后传播:图神经网络满足个性化PageRank PREDICT THEN PROPAGATE: GRAPH NEURAL NETWORKS MEET PERSONALIZED PAGERANK
五、门控图序列神经网络 GATED GRAPH SEQUENCE NEURAL NETWORKS
六、GraphSAGE大型图的归纳表示学习 Inductive Representation Learning on Large Graphs
八、JK Representation Learning on Graphs with Jumping Knowledge Networks
九、DeepGCNs: Can GCNs Go as Deep as CNNs?
十、DROPEDGE: TOWARDS DEEP GRAPH CONVOLUTIONAL NETWORKS ON NODE CLASSIFICATION
提出了一种全新的基于图结构的半监督学习方法,使用谱图理卷积的局域近似一阶进行卷积,模型在图的边数中线性缩放,并学习同时编码局部图结构和节点特征的隐含层表示
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。