赞
踩
企业里永远是技术驱动理论发展
比起理解红黑树的原理,更重要的是理解红黑树的应用场景,因为某些应用场景的需要,红黑树才会应运而生。
插入,删除,查找都是O(logn)的复杂度。
epoll的实现,内核会在内存开辟一个空间存放epoll的红黑树,并将每个epollfd加入到红黑树中,一般epoll会设置LT水平触发,当网卡有数据到来,可读缓冲区不为空,会触发回调EPOLLIN事件,而之前注册了对EPOLLIN事件感兴趣的socketfd会有专门的队列存储,内核会遍历队列搜寻对应的socketfd,因为在红黑树里找有近似O(logn)的时间复杂度,所以10亿个socket也只需要20次查找。
进程调度,内核CFS队列,以红黑树的形式存储进程信息。
有的hashtable(记得是java),当冲突时不以链表来组织重复元素,而是以红黑树的形式来组织。
内存管理,比如空闲链表freelist可以通过红黑树来组织,这样malloc的时候要找到符合大小的内存块,如果不是firstfit的原则,而是全局最优大小原则,想找到适合的内存块就可以通过红黑树来找。
Nginx的Timer事件管理。
写代码之前先写一下红黑树的规则吧
每个颜色不是红就是黑。
根节点必黑
叶子节点必黑
红色节点的左右孩子都为黑
每个节点到其叶子节点(nil)的所有路径上的黑色节点数量都一样
我的理解:从任一节点到叶子结点的路径上,路径的元素必然有黑色节点,而路径的长度则取决于路径上红色节点的数量,最短的路径上,所有节点都是黑色,这种情况下,查找效率为真实的O(logn),和严格平衡的AVL树一致。而如果在刚刚的最短路径上,也就是所有黑色节点的中间插入红色节点,这样是不会打破红黑树的平衡的(规则5),此时便是最长路径,查找效率为2logn,但依然和logn在同一数量级,因此,红黑树的查找效率可以看做是(Ologn),同时比AVL树拥有更高的插入和删除效率。
- //-既然标题是c++,那么就写成满满的c++风格吧
- using Color = bool;//-颜色因为只有红或者黑,选择bool类型
- using KEY_TYPE = int;//-为了更好理解红黑树,就不写成模板类了,所以首选万年int(笑~)
- using VALUE_TYPE = int;//-同理
-
- //-全局静态红黑变量
- static const Color red = false;
- static const Color black = true;
-
- //-红黑树的节点特点,有color,有parent
- class RBtree_node{
- public:
- Color color;
- RBtree_node * parent;
- RBtree_node * left;
- RBtree_node * right;
-
- KEY_TYPE key;//-后期如果想解耦合,可以将key和value抽离出去
- VALUE_TYPE value;
- RBtree_node(Color color_):color(color_),parent(nullptr),left(nullptr),right(nullptr),key(-99999){}
- RBtree_node(Color color_, KEY_TYPE key_,RBtree_node * nil):
- color(color_),parent(nil),left(nil),right(nil),key(key_){}
- };
-
-
- class RBtree{
- private:
- //-红黑树数据成员:其中nil的意义在于,因为红黑树的所有叶子节点都是黑色的,所以可以将所有临近末尾的节点,
- //-都连接到这一个叶子结点nil上,同理,root的parent也可以连接到nil上,形成一个dummy空节点
- RBtree_node * root;
- RBtree_node * nil;
- public :
- //-以下实现了红黑树常用接口:
- //-构造函数
- RBtree(){
- nil = new RBtree_node(black);//-为所有叶子节点nil初始化,颜色为黑色
- root = nil;//-红黑树为空的时候,让nil作为root
- }
- //-左旋
- void leftRotate(RBtree_node *left_node);
-
- //- 右旋
- void rightRotate(RBtree_node * right_node);
-
- //-插入key
- void insertNode(KEY_TYPE key);
-
- //-修复插入
- void fixInsert(RBtree_node * node);
-
- //-查找某个key的节点
- RBtree_node* searchNode(KEY_TYPE key);
-
- //-查找某个节点的中序后继
- RBtree_node* successor(RBtree_node * node);
-
- //-删除key
- void deleteNode(KEY_TYPE key);
-
- //-修复删除
- void fixDelete(RBtree_node * node);
-
- //-层序遍历打印红黑树
- void print();
-
- //-打印中序遍历
- void printMiddle(RBtree_node * node);
-
- };
相关视频推荐
c/c++后端开发需要学些什么?迭代13次的c/c++后端开发学习路线分享
免费学习地址:c/c++ linux服务器开发/后台架构师
需要C/C++ Linux服务器架构师学习资料加qun812855908获取(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享
接下来将接口一一实现:
实现参照该图,至于学习方法也没啥捷径,只能把这个结构图和变换方式深深印刻在脑海里。
手撕代码的时候想象一下还是容易写的,如果觉得这样很累就纸上画个草图。
由于左旋和右旋是对称的,所以规则只需要记一半。
图1 左旋右旋
- //-左旋
- void RBtree::leftRotate(RBtree_node *left_node){
- RBtree_node * right_node = left_node->right;
- //-右节点的左枝条接在左节点的右枝条上
- left_node->right = right_node->left;
- if(right_node->left!=nil){
- left_node->right->parent = left_node;
- }
- //-右节点接在左节点的父亲上
- right_node->parent = left_node->parent;
- if(left_node == root){
- //-nil不会指向任何节点,但是root->parent是nil
- root = right_node;
- }
- else if(left_node == left_node->parent->left){
- left_node->parent->left = right_node;
- }else{
- left_node->parent->right = right_node;
- }
- //-左节点接在右节点的左枝上
- left_node->parent = right_node;
- right_node->left = left_node;
- }
-
- //- 右旋:写完左旋后,把所有left和right对调即可
- void RBtree::rightRotate(RBtree_node * right_node){
- RBtree_node * left_node = right_node->left;
- right_node->left = left_node->right;
- if(left_node->right!=nil){
- right_node->left->parent = right_node;
- }
- left_node->parent = right_node->parent;
- if(right_node == root){
- root = left_node;
- }
- else if(right_node == right_node->parent->right){
- right_node->parent->right = left_node;
- }else{
- right_node->parent->left = left_node;
- }
- right_node->parent = left_node;
- left_node->right = right_node;
- }
插入的步骤原理:
找到插入位置,注意红黑树新节点的插入位置都是叶子结点。
如果红黑树中没有节点,插入节点需要改变root指向,同时将root的parent指向nil。
改变插入节点父亲的左右指针,同时插入节点本身的左右指针指向nil。
如果插入节点的父亲是红色,说明平衡被打破了,需要执行修复插入,让红黑树恢复平衡
要点:
如果在查找的时候发现元素已经存在,我这里就直接抛弃了新元素的插入,如果要实现红黑树multimap的insert_equal功能可以自己实现一下。
为什么要插入修复?
首先我们会强制默认所有的新节点都是红色节点。
因为红色节点不论插在哪个位置,都不会破坏规则5(路径上黑色节点数量相同),唯一可能破坏的是规则4(红色节点的孩子必黑),由于破坏规则5比破坏规则4要容易得多,所以将新节点设置为红色可以尽量地避免破坏规则。
当新的红色节点插入到一个红色节点之后,破坏了规则4,才需要修复,如图2,插入元素16
修复的意义和规则在于,如何将新红节点的父亲(34)变成黑色后,依然能保持红黑树的左右平衡,这个时候才涉及到对伯父节点(184)的讨论
插入修复的步骤原理:
我们的目的是为了让左边cur为红的情况下,使父亲变黑且不会破坏平衡。
所以只要cur的parent是红色,就一直循环。
判断伯父节点(184),如果伯父节点是红色,如图2,那么同时将父亲和伯父改成黑色就不会改变平衡,将祖父(101)变红,让cur变成祖父(101)进入下一轮迭代。
图2 伯父(184)为红
如果伯父节点是黑色,如图3,插入节点16
图3 伯父(184)为黑
那么将父亲(34)变黑就会让左边多一个黑色,不过可以通过让祖父(101)变红,旋转祖父,让祖父下沉,父亲上浮,这样相当于让老爹变黑同时左右都加了一个黑色,不会破坏平衡。
但是旋转祖父需要有个前提条件,插入节点不能是父亲的靠内节点,如图4,插入节点(36)为右孩子,父亲(34)是祖父(101)左枝。
图4,插入节点(36)是靠内节点
一旦右旋祖父(101),就会破坏cur(36)和父亲(34)的连接关系,所以必须要把cur从靠内节点变成靠外节,一个方便的方式是让父亲成为新cur(34),并右旋cur(34),如图5,之后再进行上个步骤,将新父亲(36)变黑,祖父(101)变红,右旋祖父。
图5 原cur(36)经过旋转变为父亲,将34作为新cur
要点:
终止条件,当当前节点(红)的父亲为黑的时候打破循环(注意回溯到nil的时候的,nil也是黑色)
终止循环后,注意如果回溯到root,会改变root的颜色为红,需要在循环结束后fix成黑色。
因为父亲是祖父左枝也好右枝也好,变换总是左右对称的,所以规则只需要记一半。
- //-插入key
- void RBtree::insertNode(KEY_TYPE key){
- RBtree_node * prev = nil;
- RBtree_node * cur = root;
- while(cur!=nil){
- prev = cur;
- if(key>cur->key){
- cur = cur->right;
- }else if(key<cur->key){
- cur = cur->left;
- }else{//-该key已经存在
- return;
- }
- }
- //-创建新节点
- RBtree_node * new_node = new RBtree_node(red,key,nil);
- //-如果节点没有元素
- new_node->parent = prev;
- if(prev == nil){
- root = new_node;
- }
- else if(key<prev -> key){
- prev ->left = new_node;
- }else{
- prev ->right = new_node;
- }
- fixInsert(new_node);
- print();
- }
-
- //-修复插入
- void RBtree::fixInsert(RBtree_node * new_node){
- while(new_node -> parent->color == red){//-终止条件要注意
- //-如果父亲是左枝
- if(new_node->parent == new_node -> parent->parent->left){
- //-获得其伯父节点
- RBtree_node * uncle = new_node->parent->parent->right;
- if(uncle->color == red){//-如果伯父是红色,那么将父亲和伯父同时变黑,不会破坏左右平衡
- uncle->color = black;
- new_node->parent->color = black;
- new_node->parent ->parent->color = red;//-将祖父变红,才能实现下一轮回溯修复
- new_node = new_node->parent->parent;
- }else{//-如果伯父是黑色
- //-判断new_node是不是右孩子,如果是右孩子转换成左孩子
- if(new_node == new_node -> parent->right){
- new_node = new_node->parent;
- leftRotate(new_node);
- }
- //-此时红色节点是左孩子
- //-如果结构本是平衡状态,右边本该比左边多一个黑,但是我们将父亲(左)变黑会破坏平衡,
- //-所以需要右旋祖父,把父亲上浮,相当于在左枝多一个黑的时候给右枝也多了黑,这样左右就能平衡
- new_node->parent->color = black;
- new_node->parent ->parent->color = red;
- rightRotate(new_node->parent->parent);
- }
- }
- //-如果父亲是右枝(将上边代码的left和right全部对调即可,不用记规则)
- else {
- RBtree_node * uncle = new_node->parent->parent->left;
- if(uncle->color == red){//-如果伯父是红色
- uncle->color = black;
- new_node->parent->color = black;
- new_node->parent ->parent->color = red;
- new_node = new_node->parent->parent;
- }else{//-如果伯父是黑色
- if(new_node == new_node -> parent->left){
- new_node = new_node->parent;
- rightRotate(new_node);
- }
- new_node->parent->color = black;
- new_node->parent ->parent->color = red;
- leftRotate(new_node->parent->parent);
- }
- }
- }
- //-如果new_node回溯到root,此时root->parent==nil(black)打破了循环,而此时root被改变成了黑色,违反了规则1,
- //-所以最后需要强行把root fix成黑色
- root->color = black;
- }
主要讲下怎么根据当前节点找中序后继,根据BST的特性
如果当前节点有右孩子:其后继肯定在右枝条上,且是右枝条最左边的元素。
如果当前节点没有右孩子:根据中序遍历的递归顺序,假设cur是其父亲的左孩子,cur遍历完后,下一个节点(后继)就是父亲,反之,如果cur是右孩子,说明其父亲也递归完了,需要回溯父亲的父亲,所以只需要一直往上找直到cur为其parent的左孩子为止,然后返回parent,而回溯到root的时候,root的父亲虽然是nil,但是nil是没有左右孩子的,所以退出循环。
- //-查找某个key的节点
- RBtree_node* RBtree::searchNode(KEY_TYPE key){
- RBtree_node * cur = root;
- while(cur!=nil){
- if(key>cur -> key){
- cur = cur->right;
- }else if(key < cur -> key){
- cur = cur->left;
- }else{
- return cur;
- }
- }
- return cur;
- }
-
- //-查找某个节点的中序后继
- RBtree_node* RBtree::successor(RBtree_node * node){
- //-如果节点有右孩子
- if(node->right!=nil){
- RBtree_node * res = node -> right;
- while(res->left!=nil){
- res = res->left;
- }
- return res;
- }else{
- while(node!=root&&node!=node->parent->left){
- node = node->parent;
- }
- return node->parent;
- }
- }
删除的步骤原理:
类似二叉堆,当我们从栈顶pop元素后,需要用二叉树末尾节点代替原来的root,而后从二叉堆顶部开始向下修复,同理,我们要删除树上的一个节点,自然需要一个节点来顶替删除节点(key_node)的位置,因次,我们并不一定要在数据结构上真正删除key_node,可以找到那个顶替节点(delete_node),将顶替节点的数据覆盖key_node,而在数据结构上真正删除的是那个顶替节点(delete_node)。
在数据结构上真正删除哪个节点(delete_node怎么取),取决于(key_node)是否有左右枝条,
如果key_node左右孩子都没有,说明是叶子节点,直接删除key_node即可,delete_node就是key_node本身。
如果key_node左右孩子只有其一,那么删除key_node只需要将孩子接在祖父上,删除自己即可,所以delete_node依旧是key_node本身。
如果key_node左右孩子都有,那么可以根据上面的successor函数,找到key_node的直接后继,也就是删除节点右边最小的元素,将其本身数据用来顶替key_node,不会破坏BST的性质。之后将其作为delete_node在数据结构上删除即可,如图6。
图6
找到delete_node后,还要找到delete_node的孩子(delete_son),将delete_son接在delete_node的父亲上。
判断delete_node是否是黑色,如果是黑色,则删除了该元素必会破坏红黑树的平衡(规则5),需要修复fix_delete,而修复从delete_son开始。
要点:
记得额外判断如果delete_node是root的情况,需要更新其孩子delete_son为新的root。
修复删除的步骤原理:
删除节点delete_node如果是黑色的,说明树中有一个枝条(假设是左枝)的黑色节点必会比兄弟枝条(右枝)少一个。我们怎么才能使左右重新平衡,要么让左枝条黑色节点+1,要么让右枝条黑色节点-1。后续步骤全都以delete_son为其父左枝条为例,因为对称,依旧只需要记一半的规则。
让delete_son的兄弟bro变成黑色,如果bro是红色,则bro->黑色,parent->红色,左旋parent,此时bro的左枝会变成新的bro,因为bro是红色,所以根据规则4,左枝必为黑,即新bro变为黑色。
判断bro的孩子,
如果左黑右黑,将bro->红色,不会改变bro后续孩子的平衡,同时,bro所在的右枝条的黑色节点-1,红黑树重新平衡,将父亲作为新的delete_son继续循环,直到delete_son为红色。
如果左红右黑,通过右旋bro,变成左黑右红。
如果左黑右红。bro继承父亲的颜色,将bro的父亲变黑,右孩子变黑(右枝黑+1),左旋父亲(左枝黑+1,右枝黑-1),总的来说delete_son所在的左枝条的黑色节点+1,红黑树重新平衡,并且直接让delete_son=root退出循环。
要点:
终止条件:当delete_son==root或者delete_son为红的时候终止循环。
- //-删除key
- void RBtree::deleteNode(KEY_TYPE key){
- //-查找key所在节点
- RBtree_node * key_node = searchNode(key);
- //-实际删除的节点
- RBtree_node* delete_node;
- //-delete_node的孩子
- RBtree_node* delete_son;
- //-如果同时有左枝或者右枝条
- if(key_node->left != nil&&key_node->right != nil){
- delete_node = successor(key_node);
- delete_son = delete_node->right;
- }//-如果仅有左枝或者右枝条或者左右都没有
- else{
- delete_node = key_node;
- if(key_node->left != nil){
- delete_son = key_node->left;
- }else{
- delete_son = key_node->right;
- }
- }
-
- //-删除deletenode
- delete_son->parent = delete_node->parent;
- //-先判断deletenode是不是根节点
- if(delete_node == root){
- root = delete_son;
- }
- else if(delete_node == delete_node->parent->left){
- delete_node->parent->left = delete_son;
- }else{
- delete_node -> parent -> right = delete_son;
- }
- //-覆盖key_node原有数据
- key_node->key = delete_node -> key;
- key_node ->value = delete_node -> value;
-
- //-如果删除节点是黑色的,需要修复delete_son,注意是孩子
- if(delete_node->color == black){
- fixDelete(delete_son);
- }
- //-释放空间
- delete delete_node;
- //-打印
- print();
- }
-
- //-修复删除
- void RBtree::fixDelete(RBtree_node * delete_son){
- //-修复的原因是因为delete_son所在的枝条的黑节点比另一个枝条少一个,所以不平衡,所以需要填上左边缺失的黑,或者减掉右边多余的黑
- //-当delete_son是黑色的一直循环
- while(delete_son!=root&&delete_son->color == black){
- //-判断delete_son所在枝条,如果是左枝
- if(delete_son == delete_son->parent->left){
- //-如果兄弟是红色的
- RBtree_node * bro = delete_son->parent->right;
- if(bro->color == red){
- bro->color = black;//-兄弟变黑
- delete_son->parent->color = red;//-父亲变红
- leftRotate(delete_son->parent);//-左旋父亲,兄弟上浮,相当于左右都加了一个黑,不改变平衡状态
- bro = delete_son->parent->right;//-新的bro是原来bro的左枝,因为原bro是红的,其左右枝都是黑色的,这样保证新的兄弟是黑色的
- }
- //-此时兄弟是黑色的,判断兄弟的孩子
- //-左黑右黑(兄弟的孩子平衡了)
- if(bro->left->color == black&&bro->right -> color == black){
- bro->color = red;//-相当于右边减去多的一个黑,达到平衡
- delete_son = delete_son->parent;
- }else{
- //-如果是左红右黑,变成左黑右红
- if (bro->right->color == black){
- bro -> color = red;
- bro->left->color = black;
- rightRotate(bro);//-左节点上浮,相当于左右都加了一个黑,不改变平衡
- }
- bro->color = bro->parent -> color;
- bro->parent -> color = black;
- bro->right->color = black;//-给右边加了一个黑
- leftRotate(delete_son->parent);//-父亲下沉,兄弟上浮,左边加一个黑,右边减一个黑,总体上左边填上了缺少的黑也达到了平衡
- delete_son = root;
- }
- }
- //-如果是右枝(不用记规则,把上面的代码left和right对调即可)
- else {
- RBtree_node * bro = delete_son->parent->left;
- if(bro->color == red){
- bro->color = black;
- delete_son->parent->color = red;
- rightRotate(delete_son->parent);
- bro = delete_son->parent->left;
- }
- if(bro->right->color == black&&bro->left -> color == black){
- bro->color = red;
- delete_son = delete_son->parent;
- }else{
- if (bro->left->color == black){
- bro -> color = red;
- bro->right->color = black;
- leftRotate(bro);
- }
- bro->color = bro->parent -> color;
- bro->parent -> color = black;
- bro->left->color = black;
- rightRotate(delete_son->parent);
- delete_son = root;
- }
- }
- }
- delete_son->color = black;
- }
每次插入删除的时候,使用层序遍历打印一遍二叉树,可以验证一下是否正确。
每个节点都有前缀,b代表黑节点,r代表红节点。
- //-层序遍历打印红黑树
- void RBtree::print(){
- std::deque<RBtree_node*> dqueue;//-使用deque实现队列
- dqueue.push_back(root);
- while(!dqueue.empty()){
- int size = (int)dqueue.size();
- for (int i = 0; i < size; ++i) {
- RBtree_node* temp = dqueue.front();
- dqueue.pop_front();
- if(temp->left!=nullptr){
- dqueue.push_back(temp -> left);
- }
- if(temp -> right != nullptr){
- dqueue.push_back(temp -> right);
- }
- std::string color = temp->color?"b: ":"r: ";
- std::string keystr = temp==nil?"nil":std::to_string(temp->key);
- std::cout<<color<<keystr<<" ";
- }
- std::cout<<std::endl;
- }
- }
-
- //-打印中序遍历
- void RBtree::printMiddle(RBtree_node * node){
- if(node == nil){
- return;
- }
- printMiddle(node->left);
- std::string color = node->color?"b:":"r:";
- std::cout<<color<<std::to_string(node->key)<<" ";
- printMiddle(node->right);
- }
写个循环来插入元素,输入i插入元素,输入d删除元素,输入q退出程序。
附上一个在线生成红黑树的连接,可以配合测试自己写的红黑树的正确性
- int main(){
- RBtree rb;
- std::string select;
- KEY_TYPE key;
- while(true){
- std::cout<<"\n输入操作:i:插入key,d:删除key q:退出"<<std::endl;
- std::cin>>select;
- if(select == "i"){
- std::cout<<"输入key"<<std::endl;
- std::cin>>key;
- rb.insertNode(key);
- }else if(select == "d"){
- std::cout<<"输入key"<<std::endl;
- std::cin>>key;
- rb.deleteNode(key);
- }else if(select == "q"){
- break;
- }else{
- std::cout<<"输入不合法,重新输入"<<std::endl;
- }
- }
- return 0;
- }
- #include <iostream>
- #include <deque>
- #include <string>
- #include <vector>
-
- //-既然标题是c++,那么就写成满满的c++风格吧
- using Color = bool;//-颜色因为只有红或者黑,选择bool类型
- using KEY_TYPE = int;//-为了更好理解红黑树,就不写成模板类了,所以首选万年int(笑~)
- using VALUE_TYPE = int;//-同理
-
- //-全局静态红黑变量
- static const Color red = false;
- static const Color black = true;
-
- //-红黑树的节点特点,有color,有parent
-
- class RBtree_node{
- public:
- Color color;
- RBtree_node * parent;
- RBtree_node * left;
- RBtree_node * right;
-
- KEY_TYPE key;//-后期如果想解耦合,可以将key和value抽离出去
- VALUE_TYPE value;
- RBtree_node(Color color_):color(color_),parent(nullptr),left(nullptr),right(nullptr),key(-99999){}
- RBtree_node(Color color_, KEY_TYPE key_,RBtree_node * nil):
- color(color_),parent(nil),left(nil),right(nil),key(key_){}
- };
-
-
- class RBtree{
- private:
- //-红黑树数据成员:其中nil的意义在于,因为红黑树的所有叶子节点都是黑色的,所以可以将所有临近末尾的节点,
- //-都连接到这一个叶子结点nil上,同理,root的parent也可以连接到nil上,形成一个dummy空节点
- RBtree_node * root;
- RBtree_node * nil;
- public :
- //-以下实现了红黑树常用接口:
- //-构造函数
- RBtree(){
- nil = new RBtree_node(black);//-为所有叶子节点nil初始化,颜色为黑色
- root = nil;//-红黑树为空的时候,让nil作为root
- }
- //-左旋
- void leftRotate(RBtree_node *left_node);
-
- //- 右旋
- void rightRotate(RBtree_node * right_node);
-
- //-插入key
- void insertNode(KEY_TYPE key);
-
- //-修复插入
- void fixInsert(RBtree_node * node);
-
- //-查找某个key的节点
- RBtree_node* searchNode(KEY_TYPE key);
-
- //-查找某个节点的中序后继
- RBtree_node* successor(RBtree_node * node);
-
- //-删除key
- void deleteNode(KEY_TYPE key);
-
- //-修复删除
- void fixDelete(RBtree_node * node);
-
- //-层序遍历打印红黑树
- void print();
-
- //-打印中序遍历
- void printMiddle(RBtree_node * node);
-
- };
-
- //-左旋
- void RBtree::leftRotate(RBtree_node *left_node){
- RBtree_node * right_node = left_node->right;
- //-右节点的左枝条接在左节点的右枝条上
- left_node->right = right_node->left;
- if(right_node->left!=nil){
- left_node->right->parent = left_node;
- }
- //-右节点接在左节点的父亲上
- right_node->parent = left_node->parent;
- if(left_node == root){
- //-nil不会指向任何节点,但是root->parent是nil
- root = right_node;
- }
- else if(left_node == left_node->parent->left){
- left_node->parent->left = right_node;
- }else{
- left_node->parent->right = right_node;
- }
- //-左节点接在右节点的左枝上
- left_node->parent = right_node;
- right_node->left = left_node;
- }
-
- //- 右旋:写完左旋后,把所有left和right对调即可
- void RBtree::rightRotate(RBtree_node * right_node){
- RBtree_node * left_node = right_node->left;
- right_node->left = left_node->right;
- if(left_node->right!=nil){
- right_node->left->parent = right_node;
- }
- left_node->parent = right_node->parent;
- if(right_node == root){
- root = left_node;
- }
- else if(right_node == right_node->parent->right){
- right_node->parent->right = left_node;
- }else{
- right_node->parent->left = left_node;
- }
- right_node->parent = left_node;
- left_node->right = right_node;
- }
-
- //-插入key
- void RBtree::insertNode(KEY_TYPE key){
- RBtree_node * prev = nil;
- RBtree_node * cur = root;
- while(cur!=nil){
- prev = cur;
- if(key>cur->key){
- cur = cur->right;
- }else if(key<cur->key){
- cur = cur->left;
- }else{//-该key已经存在
- return;
- }
- }
- //-创建新节点
- RBtree_node * new_node = new RBtree_node(red,key,nil);
- //-如果节点没有元素
- new_node->parent = prev;
- if(prev == nil){
- root = new_node;
- }
- else if(key<prev -> key){
- prev ->left = new_node;
- }else{
- prev ->right = new_node;
- }
- fixInsert(new_node);
- print();
- }
-
- //-修复插入
- void RBtree::fixInsert(RBtree_node * new_node){
- while(new_node -> parent->color == red){//-终止条件要注意
- //-如果父亲是左枝
- if(new_node->parent == new_node -> parent->parent->left){
- //-获得其伯父节点
- RBtree_node * uncle = new_node->parent->parent->right;
- if(uncle->color == red){//-如果伯父是红色,那么将父亲和伯父同时变黑,不会破坏左右平衡
- uncle->color = black;
- new_node->parent->color = black;
- new_node->parent ->parent->color = red;//-将祖父变红,才能实现下一轮回溯修复
- new_node = new_node->parent->parent;
- }else{//-如果伯父是黑色
- //-判断new_node是不是右孩子,如果是右孩子转换成左孩子
- if(new_node == new_node -> parent->right){
- new_node = new_node->parent;
- leftRotate(new_node);
- }
- //-此时红色节点是左孩子
- //-如果结构本是平衡状态,右边本该比左边多一个黑,但是我们将父亲(左)变黑会破坏平衡,
- //-所以需要右旋祖父,把父亲上浮,相当于在左枝多一个黑的时候给右枝也多了黑,这样左右就能平衡
- new_node->parent->color = black;
- new_node->parent ->parent->color = red;
- rightRotate(new_node->parent->parent);
- }
- }
- //-如果父亲是右枝(将上边代码的left和right全部对调即可,不用记规则)
- else {
- RBtree_node * uncle = new_node->parent->parent->left;
- if(uncle->color == red){//-如果伯父是红色
- uncle->color = black;
- new_node->parent->color = black;
- new_node->parent ->parent->color = red;
- new_node = new_node->parent->parent;
- }else{//-如果伯父是黑色
- if(new_node == new_node -> parent->left){
- new_node = new_node->parent;
- rightRotate(new_node);
- }
- new_node->parent->color = black;
- new_node->parent ->parent->color = red;
- leftRotate(new_node->parent->parent);
- }
- }
- }
- //-如果new_node回溯到root,此时root->parent==nil(black)打破了循环,而此时root被改变成了黑色,违反了规则1,
- //-所以最后需要强行把root fix成黑色
- root->color = black;
- }
-
- //-查找某个key的节点
- RBtree_node* RBtree::searchNode(KEY_TYPE key){
- RBtree_node * cur = root;
- while(cur!=nil){
- if(key>cur -> key){
- cur = cur->right;
- }else if(key < cur -> key){
- cur = cur->left;
- }else{
- return cur;
- }
- }
- return cur;
- }
-
- //-查找某个节点的中序后继
- RBtree_node* RBtree::successor(RBtree_node * node){
- //-如果节点有右孩子
- if(node->right!=nil){
- RBtree_node * res = node -> right;
- while(res->left!=nil){
- res = res->left;
- }
- return res;
- }else{
- while(node!=root&&node!=node->parent->left){
- node = node->parent;
- }
- return node->parent;
- }
- }
-
- //-删除key
- void RBtree::deleteNode(KEY_TYPE key){
- //-查找key所在节点
- RBtree_node * key_node = searchNode(key);
- //-实际删除的节点
- RBtree_node* delete_node;
- //-delete_node的孩子
- RBtree_node* delete_son;
- //-如果同时有左枝或者右枝条
- if(key_node->left != nil&&key_node->right != nil){
- delete_node = successor(key_node);
- delete_son = delete_node->right;
- }//-如果仅有左枝或者右枝条或者左右都没有
- else{
- delete_node = key_node;
- if(key_node->left != nil){
- delete_son = key_node->left;
- }else{
- delete_son = key_node->right;
- }
- }
-
- //-删除deletenode
- delete_son->parent = delete_node->parent;
- //-先判断deletenode是不是根节点
- if(delete_node == root){
- root = delete_son;
- }
- else if(delete_node == delete_node->parent->left){
- delete_node->parent->left = delete_son;
- }else{
- delete_node -> parent -> right = delete_son;
- }
- //-覆盖key_node原有数据
- key_node->key = delete_node -> key;
- key_node ->value = delete_node -> value;
-
- //-如果删除节点是黑色的,需要修复delete_son,注意是孩子
- if(delete_node->color == black){
- fixDelete(delete_son);
- }
- //-释放空间
- delete delete_node;
- //-打印
- print();
- }
-
- //-修复删除
- void RBtree::fixDelete(RBtree_node * delete_son){
- //-修复的原因是因为delete_son所在的枝条的黑节点比另一个枝条少一个,所以不平衡,所以需要填上左边缺失的黑,或者减掉右边多余的黑
- //-当delete_son是黑色的一直循环
- while(delete_son!=root&&delete_son->color == black){
- //-判断delete_son所在枝条,如果是左枝
- if(delete_son == delete_son->parent->left){
- //-如果兄弟是红色的
- RBtree_node * bro = delete_son->parent->right;
- if(bro->color == red){
- bro->color = black;//-兄弟变黑
- delete_son->parent->color = red;//-父亲变红
- leftRotate(delete_son->parent);//-左旋父亲,兄弟上浮,相当于左右都加了一个黑,不改变平衡状态
- bro = delete_son->parent->right;//-新的bro是原来bro的左枝,因为原bro是红的,其左右枝都是黑色的,这样保证新的兄弟是黑色的
- }
- //-此时兄弟是黑色的,判断兄弟的孩子
- //-左黑右黑(兄弟的孩子平衡了)
- if(bro->left->color == black&&bro->right -> color == black){
- bro->color = red;//-相当于右边减去多的一个黑,达到平衡
- delete_son = delete_son->parent;
- }else{
- //-如果是左红右黑,变成左黑右红
- if (bro->right->color == black){
- bro -> color = red;
- bro->left->color = black;
- rightRotate(bro);//-左节点上浮,相当于左右都加了一个黑,不改变平衡
- }
- bro->color = bro->parent -> color;
- bro->parent -> color = black;
- bro->right->color = black;//-给右边加了一个黑
- leftRotate(delete_son->parent);//-父亲下沉,兄弟上浮,左边加一个黑,右边减一个黑,总体上左边填上了缺少的黑也达到了平衡
- delete_son = root;
- }
- }
- //-如果是右枝(不用记规则,把上面的代码left和right对调即可)
- else {
- RBtree_node * bro = delete_son->parent->left;
- if(bro->color == red){
- bro->color = black;
- delete_son->parent->color = red;
- rightRotate(delete_son->parent);
- bro = delete_son->parent->left;
- }
- if(bro->right->color == black&&bro->left -> color == black){
- bro->color = red;
- delete_son = delete_son->parent;
- }else{
- if (bro->left->color == black){
- bro -> color = red;
- bro->right->color = black;
- leftRotate(bro);
- }
- bro->color = bro->parent -> color;
- bro->parent -> color = black;
- bro->left->color = black;
- rightRotate(delete_son->parent);
- delete_son = root;
- }
- }
- }
- delete_son->color = black;
- }
-
- //-层序遍历打印红黑树
- void RBtree::print(){
- std::deque<RBtree_node*> dqueue;//-使用deque实现队列
- dqueue.push_back(root);
- while(!dqueue.empty()){
- int size = (int)dqueue.size();
- for (int i = 0; i < size; ++i) {
- RBtree_node* temp = dqueue.front();
- dqueue.pop_front();
- if(temp->left!=nullptr){
- dqueue.push_back(temp -> left);
- }
- if(temp -> right != nullptr){
- dqueue.push_back(temp -> right);
- }
- std::string color = temp->color?"b: ":"r: ";
- std::string keystr = temp==nil?"nil":std::to_string(temp->key);
- std::cout<<color<<keystr<<" ";
- }
- std::cout<<std::endl;
- }
- }
-
- //-打印中序遍历
- void RBtree::printMiddle(RBtree_node * node){
- if(node == nil){
- return;
- }
- printMiddle(node->left);
- std::string color = node->color?"b:":"r:";
- std::cout<<color<<std::to_string(node->key)<<" ";
- printMiddle(node->right);
- }
-
- int main(){
- RBtree rb;
- std::string select;
- KEY_TYPE key;
- while(true){
- std::cout<<"\n输入操作:i:插入key,d:删除key q:退出"<<std::endl;
- std::cin>>select;
- if(select == "i"){
- std::cout<<"输入key"<<std::endl;
- std::cin>>key;
- rb.insertNode(key);
- }else if(select == "d"){
- std::cout<<"输入key"<<std::endl;
- std::cin>>key;
- rb.deleteNode(key);
- }else if(select == "q"){
- break;
- }else{
- std::cout<<"输入不合法,重新输入"<<std::endl;
- }
- }
- return 0;
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。