赞
踩
GPT-2的整体结构如下图,GPT-2是以Transformer为基础构建的,使用字节对编码的方法进行数据预处理,通过预测下一个词任务进行预训练的语言模型。
GPT-2 就是一个语言模型,能够根据上文预测下一个单词,所以它就可以利用预训练已经学到的知识来生成文本,如生成新闻。也可以使用另一些数据进行微调,生成有特定格式或者主题的文本,如诗歌、戏剧。
使用GPT-2模型配套的PreTrainedTokenizer类,所需要加载的词表文件比BERT模型多了一个merges文件。
- import torch
- from transformers import GPT2Tokenizer, GPT2LMHeadModel
-
- # 案例描述:Transformers库中的GPT-2模型,并用它实现下一词预测功能,即预测一个未完成句子的下一个可能出现的单词。
- # 下一词预测任务是一个常见的任务,在Transformers库中有很多模型都可以实现该任务。也可以使用BERT模型来实现。选用GPT-2模型,主要在于介绍手动加载多词表文件的特殊方式。
-
- # 1.1 加载词表文件
-
- # 自动加载预训练模型(权重)
- # tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
- # 手动加载词表文件:gpt2-merges.txt gpt2-vocab.json。
- # from_pretrained方法是支持从本地载入多个词表文件的,但对载入的词表文件名称有特殊的要求:该文件名称必须按照源码文件tokenization_gpt2.py的VOCAB_FILES_NAMES字典对象中定义的名字来命名。
- # 故使用from_pretrained方法,必须对已经下载好的词表文件进行改名将/gpt2/gpt2-vocab.json和/gpt2/gpt2-merges.txt这两个文件,分别改名为“gpt2/vocab.json和/gpt2/merges.txt
- tokenizer = GPT2Tokenizer.from_pretrained(r'./models/gpt2') # 自动加载改名后的文件
-
- # 编码输入
- indexed_tokens = tokenizer.encode("Who is Li BiGor ? Li BiGor is a")
- print("输入语句为:",tokenizer.decode(indexed_tokens))
- tokens_tensor = torch.tensor([indexed_tokens]) # 将输入语句转换为张量
-
- # 自动加载预训练模型(权重)
- # model = GPT2LMHeadModel.from_pretrained('gpt2')
- # 手动加载:配置文件gpt2-config.json 与 权重文件pt2-pytorch_model.bin
- model = GPT2LMHeadModel.from_pretrained('./models/gpt2/gpt2-pytorch_model.bin',config='./models/gpt2/gpt2-config.json')
-
- # 将模型设置为评估模式
- model.eval()
- DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
- tokens_tensor = tokens_tensor.to(DEVICE)
- model.to(DEVICE)
-
- # 预测所有标记
- with torch.no_grad():
- outputs = model(tokens_tensor)
- predictions = outputs[0]
-
- # 得到预测的下一词
- predicted_index = torch.argmax(predictions[0, -1, :]).item()
- predicted_text = tokenizer.decode(indexed_tokens + [predicted_index])
- print("输出语句为:",predicted_text) # GPT-2模型没有为输入文本添加特殊词。
- # 输出:Who is Li BiGor? Li BiGor is a Chinese
-
- # 案例描述:Transformers库中的GPT-2模型,通过循环生成下一词,实现将一句话补充完整。
- # 1.2 生成一段完整的话 这里有BUg 暂不会改
- stopids = tokenizer.convert_tokens_to_ids(["."])[0] # 定义结束符
-
- # 在循环调用模型预测功能时,使用了模型的past功能。该功能以使模型进入连续预测状态,即在前面预测结果的基础之上进行下一词预测,而不需要在每预测时,对所有句子进行重新处理。
- # past功能是使用预训练模型时很常用的功能,在Transformers库中,凡是带有下一词预测功能的预训练模型(如GPT,XLNet,CTRL等)都有这个功能。
- # 但并不是所有模型的past功能都是通过past参数进行设置的,有的模型虽然使用的参数名称是mems,但作用与pat参数一样。
- past = None # 定义模型参数
-
- for i in range(100): # 循环100次
- with torch.no_grad():
- output, past = model(tokens_tensor, past=past) # 预测下一次
- token = torch.argmax(output[..., -1, :])
-
- indexed_tokens += [token.tolist()] # 将预测结果收集
- if stopids == token.tolist(): # 当预测出句号时,终止预测。
- break
- tokens_tensor = token.unsqueeze(0) # 定义下一次预测的输入张量
-
- sequence = tokenizer.decode(indexed_tokens) # 进行字符串编码
- print(sequence)
- import torch
- from transformers import GPT2Tokenizer, GPT2LMHeadModel
-
- # 案例描述:Transformers库中的GPT-2模型,并用它实现下一词预测功能,即预测一个未完成句子的下一个可能出现的单词。
- # 下一词预测任务是一个常见的任务,在Transformers库中有很多模型都可以实现该任务。也可以使用BERT模型来实现。选用GPT-2模型,主要在于介绍手动加载多词表文件的特殊方式。
-
- # 1.1 加载词表文件
-
- # 自动加载预训练模型(权重)
- # tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
- # 手动加载词表文件:gpt2-merges.txt gpt2-vocab.json。
- # from_pretrained方法是支持从本地载入多个词表文件的,但对载入的词表文件名称有特殊的要求:该文件名称必须按照源码文件tokenization_gpt2.py的VOCAB_FILES_NAMES字典对象中定义的名字来命名。
- # 故使用from_pretrained方法,必须对已经下载好的词表文件进行改名将/gpt2/gpt2-vocab.json和/gpt2/gpt2-merges.txt这两个文件,分别改名为“gpt2/vocab.json和/gpt2/merges.txt
- tokenizer = GPT2Tokenizer.from_pretrained(r'./models/gpt2') # 自动加载改名后的文件
-
- # 编码输入
- indexed_tokens = tokenizer.encode("Who is Li BiGor ? Li BiGor is a")
- print("输入语句为:",tokenizer.decode(indexed_tokens))
- tokens_tensor = torch.tensor([indexed_tokens]) # 将输入语句转换为张量
-
- # 自动加载预训练模型(权重)
- # model = GPT2LMHeadModel.from_pretrained('gpt2')
- # 手动加载:配置文件gpt2-config.json 与 权重文件pt2-pytorch_model.bin
- model = GPT2LMHeadModel.from_pretrained('./models/gpt2/gpt2-pytorch_model.bin',config='./models/gpt2/gpt2-config.json')
-
- # 将模型设置为评估模式
- model.eval()
- DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
- tokens_tensor = tokens_tensor.to(DEVICE)
- model.to(DEVICE)
-
- # 预测所有标记
- with torch.no_grad():
- outputs = model(tokens_tensor)
- predictions = outputs[0]
-
- # 得到预测的下一词
- predicted_index = torch.argmax(predictions[0, -1, :]).item()
- predicted_text = tokenizer.decode(indexed_tokens + [predicted_index])
- print("输出语句为:",predicted_text) # GPT-2模型没有为输入文本添加特殊词。
- # 输出:Who is Li BiGor? Li BiGor is a Chinese
-
- # 案例描述:Transformers库中的GPT-2模型,通过循环生成下一词,实现将一句话补充完整。
- # 1.2 生成一段完整的话 这里有BUg 暂不会改
- stopids = tokenizer.convert_tokens_to_ids(["."])[0] # 定义结束符
-
- # 在循环调用模型预测功能时,使用了模型的past功能。该功能以使模型进入连续预测状态,即在前面预测结果的基础之上进行下一词预测,而不需要在每预测时,对所有句子进行重新处理。
- # past功能是使用预训练模型时很常用的功能,在Transformers库中,凡是带有下一词预测功能的预训练模型(如GPT,XLNet,CTRL等)都有这个功能。
- # 但并不是所有模型的past功能都是通过past参数进行设置的,有的模型虽然使用的参数名称是mems,但作用与pat参数一样。
- past = None # 定义模型参数
-
- for i in range(100): # 循环100次
- with torch.no_grad():
- output, past = model(tokens_tensor, past=past) # 预测下一次
- token = torch.argmax(output[..., -1, :])
-
- indexed_tokens += [token.tolist()] # 将预测结果收集
- if stopids == token.tolist(): # 当预测出句号时,终止预测。
- break
- tokens_tensor = token.unsqueeze(0) # 定义下一次预测的输入张量
-
- sequence = tokenizer.decode(indexed_tokens) # 进行字符串编码
- print(sequence)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。