赞
踩
从准备数据集、训练模型,导出与测试和部署推理四个方面,介绍如何使用YOLOv8 OBB实现自定义旋转对象的检测。
数据集制作
用手机拍一张图像
然后自己写个代码,每旋转一度保存一张图像,这样就成功生成了360张图像及其注释文件,分为训练集与验证集。训练文件夹包含 320张带有注释的图像。测试和验证文件夹都包含 40 张带有注释的图像。数据集部分图像显示如下:
模型训练
准备好数据集以后,直接按下面的命令行运行即可:
yolo obb train data=pen_dataset.yaml model=yolov8s-obb.pt epochs=25 imgsz=640
导出与测试
模型导出与测试 whaosoft aiot http://143ai.com
- # export model
- yolo export model=yolov8s-obb.pt format=onnx
- # inference model
- yolo obb predict model=pen_best.pt source=pen_rotate_test.png
部署推理
转成ONNX格式文件以后,基于OpenVINO-Python部署推理,相关代码如下
- class_list = ["pen"]
- colors = [(255, 255, 0), (0, 255, 0), (0, 255, 255), (255, 0, 0)]
-
- ie = Core()
- for device in ie.available_devices:
- print(device)
-
- # Read IR
- model = ie.read_model(model="pen_best.onnx")
- compiled_model = ie.compile_model(model=model, device_name="CPU")
- output_layer = compiled_model.output(0)
-
- ## xywhr
- frame = cv.imread("D:/python/my_yolov8_train_demo/four_pen.jpg")
- bgr = format_yolov8(frame)
- img_h, img_w, img_c = bgr.shape
-
- start = time.time()
- image = cv.dnn.blobFromImage(bgr, 1 / 255.0, (640, 640), swapRB=True, crop=False)
-
- res = compiled_model([image])[output_layer] # 1x25x8400
- rows = np.squeeze(res, 0).T
- boxes, confidences, angles, class_ids = post_process(rows)
-
- indexes = cv.dnn.NMSBoxes(boxes, confidences, 0.25, 0.45)
- M = np.zeros((2, 3), dtype=np.float32)
- for index in indexes:
- box = boxes[index]
- d1 = -angles[index]
- color = colors[int(class_ids[index]) % len(colors)]
- pts = [(box[0], box[1]), (box[0]+box[2], box[1]), (box[0]+box[2], box[1]+box[3]), (box[0], box[1]+box[3])]
- rrt_pts = get_rotate_point(pts, M, d1, box)
- cv.drawContours(frame, [np.asarray(rrt_pts).astype(np.int32)], 0, (255, 0, 255), 2)
- cv.putText(frame, class_list[class_ids[index]], (int(box[0]+box[2]/2), int(box[1]+box[3]/2)), cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 2)
-
- end = time.time()
- inf_end = end - start
- fps = 1 / inf_end
- fps_label = "FPS: %.2f" % fps
- cv.putText(frame, fps_label, (20, 45), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
-
- cv.imshow("YOLOv8-OBB Rotate Object Detection", frame)
- cv.imwrite("D:/pen_result.jpg", frame)
- cv.waitKey(0)
- cv.destroyAllWindows()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。