当前位置:   article > 正文

canvas计算角度_canvas 两个点角度

canvas 两个点角度

在这里插入图片描述

<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>Document</title>
  <style>
    .btn {
      padding: 10px 20px;
      background: rgb(73, 152, 243);
      color: #fff;
      margin-top: 30px;
    }
  </style>
</head>
<body>
  <canvas id="myangle" style="width: 100%;" ref="canvass"></canvas>
  <script>
    var angle = '45°'
    var canwidth = 0
    var canheight = 0
    var cPointSize = 8
    var dragPoint = 0
    var point1 = { x: 100, y: 75 }
    var point2 = { x: 200, y: 100 }
    var point3 = { x: 150, y: 200 }
    var startX = 0
    var startY = 0
    var btnLoading = false
    var base64Img = 
    '' +
    'l0861SGjNWCj/MkmDTtgP38mV7KtpxsKhyQv36Q1SBaiayHQ6lBrahufw9tvsB42BRVVz6rb4QVaArNLq7m6T43niJrr9Ril9NZYkVB3WoqKa4SHndIKpAV5gl1GDjVokvvUyS446T6O57JFi9zj4W3ms3qj8LVmyW0lMfSjx4pCS/vcoavx7z68slHnSnhPePk8L0Jdbng84jqvCenr4wWLdR2rbv7vjSpo7b0yKl0WMkOeEESU4+RUqvvJbexhIrqnU0qqh9RBV+M0ucpXFvmCXNe6U44WNpaw7s42xMPINVa9PrqCZHHSXxJZdKsGY9UcUBiKo/iCr8trMhjWJ6kfErryqfyKGTUSx+Mlniiy6W6P4R6SE6nAMY1YiqP4gq/GXiWZg7X+Lzzpfk2OMkfPrZri1l7txTXkLd0UBQYUVU/UFU4S8TwPSqNSefIsmZZ0nxm2/t49qjIVWs9sVBEFV/EFX4y0SwOOGjdPVveM996QkgrOO6QndY6sz2WdQ1ouoPogqPldIzJOlVawpzF0jbrh44LZtZYtU9iYuTv5DCjNnS1tBkHwevEFV/EFWgJ+lhNs+OluTEkyS67nopLFzCamEQVY8QVaAnNbZK6b3xkpx0ksiRR6YXROfScCCq/iCqQE/S1b/bdqUn4U8GHi3xWWdLccrXLK16jqj6g6jCPxq+zdulNPp5KX72hQRbttvHdZUJaGHWXImuuFLi885Ld4Yiqn4jqv4gqvBPQ7MUvvnOLEkOTC/zVvhpgX1cd+xqlOKnk6U48ZP0NIjWMfAGUfUHUYV39ET44RNPphchjy+8SAoLHJ1MXJdOWUKFQVT9QVThncKipRIPHSpy2GES3nO/BGs3Wsf1uCyyhNY7RNUfRBXeKUyfIcnpp6dRLX4wQQI9vaBlXE/TbbfByrXpaQ1t96N+EVV/EFV4J9iyQ4rfTpNwzFgJNmyWtpaCdVyPaQ4kWLpCwmF3SHTtdVL47geWVj1DVP1BVOEnDd3WHe6DqvRnLVwi8ZlnSXL00RLde1/5+q22sahLRNUfRBVwTZdKTVjDRx6T5NhjJRk0SErvvFc+NzBLrF4gqv4gqvBLdkUZ232OBUtXSnT1NZIceaREl14mbVvMknIfPRf0LqLqD6IKf7QUJFi9vu+OGzUB1WNXw+EjpfjlNyyleoSo+oOowhvB+k0S3j8iPeFD6YWXrGNc0z2Ng83beuaKOKgZRNUfRBXeKMyeK/F556dXkCm9Os46BnCBqPqDqMIbpTffkeSkkyU+d7AUfphlHdPrmtok2Lil146VRd8gqv4gqvBGdMedkhxzjETX3SDB2g3WMb2qpZBebzV85NHyNlYTWOs41Dyi6g+iCj+YgJWeG5PudRuOerLv97rVnZS275Z48GCRfv0kuulmKSxfZR+LmkdU/UFU4Y10JyFd1WpiZru/1zW3SentdyU5+eT0+FU9yT8XNK9PRNUfRBXoK2ZpVfdIjm66pXwZuiFDpDDzx945yxN6FVH1B1EF+pIJa2HqNImuvyHd5lv48SdOCFGHiKo/iCrqmwZqT3N6hZi23U35XArcuSfdYSnQbaqcEKIuEVV/EFXUNxPSwnfT0/PuFj+fkl6hxjoOcIio+oOooq7pKQnDhx6R5KiBEl1zrRQWL7eOA1wiqv4gqqhrhcXLJL700vSC5OGjj/XdeX87Slf/7m6U4tRpUpg+U9p2cUHzekBU/UFUUb9ai2mY9HAVjWrxsy/K21VtY/OiqU2KU75Kz0+cXtBcz/zEdtaaR1T9QVRRv5oDKXz5jcTnnCPxWWdJsHJN/vesbWw18Z8iyamnpYfZRHffI8Hm7faxqBlE1R9EFfXLBFR3TNJjP4ufTK6N8+vqUqkJazR8ZBrV5IwzpPjRp/axqBlE1R9EFfVNI6VLp3ooTQ2tRtULmsdXXCnJ0UenS6ucEKK2EVV/EFUgj/a0SPHLr6X49rsSrNvEdtUaR1T9QVSBvNILme9sIKh1gKj6g6iiLukZlHRbauHHeeUTPtRLmPT3ILI1h6j6g6iiLhWm/SDxRRdJfPGlUvz62/zv9dse3elq+67ydWB16dU2BrlFVP1BVFGXSqOfl+S44yU+91yzxDq7tqOqz33rTik985xEV14lxUmf28cht4iqP4gq6k9Tm0Q33ChJ//5phDRINb3KtKUgwZr1Ep9/viRHHSXRrbdJsGqtfSxyiaj6g6iivuhq0jUbJL74YkmOPkbChx6u/cNRdIbATHull16R5MSTjBMlfG5MOvPA9tXaQFT9QVRRX0xkgk3bzJvYOxI+9rgUvvnOPq4GBSvXSnTLrelpF+NLLi0falPr24o9QVT9QVRRnzQ2Dc1ltvtrVHHK1xJdd72UxrxQXq1NVGsCUfUHUQVqSUOTBBpTzrBUU4iqP4gqUEt0GyrbUWsOUfUHUUX9aG6TNr2ii57sQXfisY2pR3ta/Pp9axBR9QdRRd0Itu6Q0ugxEt53vxQ/rZGr0nRHS0EK8xdJaczY9HJxub9WrMeIqj+IKuqD7vW7YrXEQ4aI/OEPEj7zXP1fh9QsnYaPPJoeZhNddbUU5i1k1XBOEVV/EFXUB70g+cwf0xM+SL9+5VMT1vsqUfM7Fyd8XL6g+dFHmyX04eWT8BPW3CGq/iCqqAu6R2zp5VdFDjssvbB3YeES67j6YuK5p0WiO+8SOeIISU47XYofT2LP4Bwiqv4gqqgP23dL6aWXJb7wIgnvuU+CdRvt4+qNWSrVGYjommvT370w5WuOXc0houoPoor60NQmweZtUpg7XwoLFtfdSR8OaXdj+TJ3P8yUYNsuVv/mEFH1B1EF6oGGlCXU3CKq/iCqQD1qDsoIbS4QVX8QVdS+bCmN1Z5l5u+gFzNPV4Pr3sC2MehVRNUfRBU1r/DjT1J6+10pfDdd2nbu8TuuTW1SmD1H4osuThW//MY+Dr2KqPqDqKK2mYCWnhsjyelnSHT1NRKs3+z3Kk89y9LCJRKffXb5gua335EutVrHotcQVX8QVdS0YPtuiW68SZIBAyS+9PJ0T1ivl1T1d9/TIqVnR6cXM09OPllKr44rb1/1+e/Sx4iqP4gqappuN9TVnMnRx0j42CjrGB8Fy1dLdPMtkpx0kkTXXidteh5kotpniKo/iCpqWvHzLyU+99wU2w/3V/ziKwlHPSmF2XOt96P3EFV/EFXUth27pfjVN1Kc8JEEG7bYx/hKL4XX2CJtLYH9fvQaouoPoorapjsl6SXP9NARrimKnCKq/iCqgC/MzEewam163Vnr/XCGqPqDqKJ2cbagjtEdlMxSfHHSZxLecWd6AXfdQ9g6Fk4QVX8QVdQmPYH+itUSbNxqAtHMnq2Hon+bHQ0SX3BBeuiRXtEmWLbSPhZOEFV/EFXUJL20mx6DGZ99jhQ+/1LaGlut4/Azs1RffPd9SQadKsnAgRI+8BBL+r2IqPqDqKL27GmRwvczRP7wB0mOPVaK33zHkmoHBFt2SHjX3WlU47POKp/WUU8KYRmLnkVU/UFUUXP0uqnhM8+J/O53Ep93nhR+WmAdhypmxqMwY7ZEw26X8ImnJFiznqXVXkJU/UFUUXOClWvSswXJYYdJdOddJg6c27ajgh0NUli6QoK1G633ww2i6g+iipqjEQ2fHWOWUs+X4vgP0/P/2sYBeUFU/UFUUZt0G2pDMyeK7y7927UUyquB+Ts6Q1T9QVRRu4hA95i/X6CneRw/QYqTPi9f4cc2Dt1GVP1BVAFfNbVJ6bXXyxckuHyoFKbPtI9DtxFVfxBV1JRg2y4JNukJHzgjULc1B1KY+l16eE1y9NES3XGnBOs2sQbAAaLqD6KK2mEiUHr3fQmffFoK335vH4OO03iamZPwoUfS432TU0+V4gcTOczGAaLqD6KKmhFs3i7RrcNE+veX6KqrrWPQecGS5RLddIskgwalMyzpjkuWceg6ouoPooqaoSd5iC+8SJLjj5dw9FjrGHSBiWhh5hwpfjW1vEe1bQy6haj6g6iiZqTnrj35FEnOPpvVvz1Nz51MUJ0hqv4gqqgZpdfflPjiSyS6bZgEq9dZx6AH6TZXdlrqEUTVH0QVNUNPradLqOlqykb2/nVCI9ocSLBqnRTmzk+3Y1vHoVOIqj+IKoB9dM/fjVslvOue9NjV4sRPuJJNDyCq/iCqAPZpKUiwbJXEZ5wh8vvfS3ztdRKs5YIF3UVU/UFUAezz8+rf0tvvpIfYJMceJ+HjT5SXVtm+2mVE1R9EFfmmS06bt0nprXek8ONcCbbttI9Dj9IzK0V33CXJccdLfOll5R3DOClElxFVfxBV5NvuJil+8VV6tp/46mtMWH+yj0PPMgHVncLCBx+S4kefSNvOPUS1G4iqP4gqci3YtC1d/Sj9+kl8wYVSmLvAOg4O6HGreuUaYtptRNUfRBW5lu40c8WVIocdJuGIkRKs32Qdh97CdtWuIKr+IKrIr7aSFGbNkeSYY9I9UdPVkLu45mdfCnY3cYWgLiCq/iCqyLVgy/Y0pnollWDdRlZF9hU9P/D3M9PLwxXfG88pDTuJqPqDqCLfNKLmDTxYvzm9qLZ1DNwzf/v0EnEnnSTxZZelaxCs42BFVP1BVAG0z8zcFCd/IfGZZ6ar46O77pZg606OXe0gouoPoor80jds3rTzY3eThA88KMnAgZKcfkZ6qBOnMOwYouoPoop80gtl72hgp5icKSxcItFNN0t85VVS+GFW+f+TZRz2R1T9QVSRS8GaDRKOfDA9nCbd65c373zY05z+vwnWrC/vrMSahA4hqv4gqsilwvSZEg85L70oeend91nNmCeslu80ouoPoopcKr30iiQnnCDJ2WengWVJNcd0FX1jK4c7HQJR9QdRRf6YN+fo9jskOfJIiS+7XIKNW1kyyiP9f7K7UQrzFkph6jRp27bLPg5E1SNEFfmib9Q790jpsVESn32OhMNH2Meh7zW1SfHTzyQ+7XSJzzlXip9NsY8DUfUIUUX+6GrEHQ0SbNhSPumDbQz6XktBgiXLJR48RJIBAyTSC5qvXs9aBQui6g+iivzSN2feoPNL/9/saSlv/z7pZElOOFFKY8ZyQXMLouoPogqgW4JVa9MzLOnZlvRUhulOS5ZxPiOq/iCqyA9d7avHQe7YXd6jlL1Ja4NZKi1M+0FKL78qwYo1LKVaEFV/EFXkR0OzFL83b86vjpPCzB8l2LXHPg6oMUTVH0QVuRFs2ibhyAckOfY4ia67QYIlK6zjgFpDVP1BVJEbwep1Ep9/gcgf+kk46kkJNm6xjkMN2NkgwfJV6YyS9X7PEFV/EFXkQ3MghTnzJTnyKJEBA6T42Rfl7aq2scivtpIEuxql9MKLEl1zbfkUk3u4oDlR9QdRRT6YgBY//1KS009Pz/mrV0OxjkO+tRYl2LZTosuHls+INfQKKcxfZB/rEaLqD6KKfDBLqsHajekSanH8hxJsZrVhLdMrC+k1V5Ojj5bwnnvLh9l4vFcwUfUHUUV+6JuuHkajOCyjtu1qTE8xqavyk0GDpDhtenpaQ+tYDxBVfxBVAD3PzBTpifbD+4dLadwb0ra7iSVVouoFogrADbO0GqzdwKp8g6j6g6iizwVbdkhh9lwpLFgswc4GzqSEukNU/UFU0ecK306TaOgVEl19jRR+mFU+IbtlHGqcXtVm++50Cda3VcFE1R9EFX2u9NyYdC/R5LTTpfDTAqJaj0xEdTVw6YWXpDh+gnfHrhJVfxBV9Ck9v2906zCRfv0kvuCC8pste/7WHzOjFD76mCSnnJKeNav41VT7uDpFVP1BVNGnCstWSnzZ5eXjGR94kKDWq9aiFKbPkPjcwelJIaLrb5Bg/SZvtp8TVX8QVfSpYMNmKb3ymoQjH5TCd9OtY1AHdGZJT1/47Oj0YuZ67Grp/Q+8WdVPVP1BVNH39rRIsG2XtO1osN+PuhEsWyXRPfdKfNHFJjRvE1XUHaIKoPfoDktLlkth7nyvDp0iqv4gqgB6l8a0pWC/r04RVX8QVfQNPWZx68501S8ne0C9I6r+IKroE3rmpNKYsRI++nj58Ao9N6xlHOqY7rzU1JZeGk4v+xes32wfVweIqj+IKnqfbldbt7F8abD+A6Q09kUJduy2j0X9ai1KsHqdRNffKPGFF5VPCqGXiLONrXFE1R9EFb1Pl05m/ijyu99JcsQRUpz8uXfb2GDoJoClKyUeMsTMXPVPT1UZLF1hH1vjiKo/iCp6nZ5AX5dONarxOeemJ9O3jYMH2kpSeuud9LjV9AQgIx+wj6txRNUfRBW9Lti8XcKnnpHk1FMluv0OCVats46DH/ScwOHwkZIcd5xEl10ubRu21N3Oa0TVH0QVva+xNb3OZuH7Genl3thJyXMmoIU589K1F4UZs9PNA+lOTLaxNYqo+oOoAuh7Dc3lS8LV6eFVRNUfRBVAPunSap0ssRJVfxBV9C5dEtE9fet0iQQ9JDs5yG6z9Gq7v8YQVX8QVfSqwvzFUvz0s3QbWno2pTrbdoZu0tdDcyDFjz6ReOgVohc1T18ntrE1hKj6g6ii95ilj9JLr0h8xhkSXXW1tOmSCFFFtdaihHfdLcnxJ0h84YXlnZds42oIUfUHUUWvCbZsl+jOuyQ5/HCJLh9al3t5omcUv/xG4nPPTY9djW69TYKNtX2YDVH1B1FFr9FzvMaXXJIej1h65jnrGCC1c4+Ejz1uXivHS3LmmVL49vuavvYqUfUHUUWvKX4yKT2DUnzu4HRJxDYGyBQWLkkvaB7dfW/6b6KKWkBU0WuCNRuk+N4HUnrltfTftjHAXiaiwfbd6VJrre8tTlT9QVTRe3RJY2eDBDsayttTbWOASrrNvQ62uxNVfxBVALVDj1utwUOxiKo/iCqA/DMRDTZsSbfLFyd+nJ6E3zoup4iqP4gq3NOz45g3xPSNsA4O5EcfMK+h4oSPJD79DInPOluKH08qn5nLNjaHiKo/iCrc0iWMjVsk0TfDq66R4tRpdbGNDL2stZjuAawXNJff/z69RFywblPNvJaIqj+IKtza3SSFr6ZKcuRRkpxyihQ/n2IfB7SnqU1K494wr6NBkhx7rISjnqyZNR9E1R9EFU7pBclLTz0j0r+/xOedL4Uff7KOAzpCD8UKh49Iz7akp7yslb3Iiao/iCqcClavk+jGm0T69ZPwnnvTi5PbxgEd0lJIL8agJ9wP1rP6F/lDVOGURjS8b3h6JiXdczM9kN8yDqhnRNUfRBXutRZNXDdKW0MzOymh5+lrSs+4lOOzLhFVfxBV9A59wyOocEAvZl74cV55b2DL/XlAVP1BVAHUJl0DYkIa3n2PxBdcmJ5Tuq2x1T62jxFVfxBVuKFLpbsapW3brlyvlkMN06hu2SHRNddKMnCgxBdfIoVZc+1j+xhR9QdRhRt7WqT4xVdSevX1dG/NWjr7DWpLcfIXEp91liTHHJNeBD+PV7Uhqv4gqnAiWLcxfYOTI46Q6IYbyzspWcYB3aYXNH98VBrV5OyzyzNxOTt+laj6g6jCicKsOel2ruT446U09sXcbutCHWgrSeGnhVJ65rl0qTWPmxuIqj+IKpxITyd30kmSnHmmFKZNZ/Uv3NrTXL6guW7Ht93fx4iqP4gqnCg9O1ric86R+MqrJFi/mcNp4DWi6g+iCieC5avT617q5bpYSkWva2pLTziilxzMwwwdUfUHUQVQd4KlKyQcPlJKL78qbTsarGN6E1H1B1EFUF/Mkml0192SHHWUxIMHS/HLb+zjehFR9QdRBVB3Cj8tKO993n9A+YLmekWbPtwrmKj6g6ii57QUJNi0TYpTvpJgyXJp29n3q93gqYYmKb3wkiQnnZwqvvVunx7WRVT9QVTRc3Y3lc9uc8EFEt15txTmL7aPA3pBsGKNhA8/KtGtt0nx62/79IQQRNUfRBU9JtiyXcKHHknPohRfcqmJ6iLrOKBX6JoT3QN4+ao+3wOYqPqDqKLHBGs2SHzRxSL9+pm4PlzejmUZB/iGqPqDqKJn6BVDFiyRxCylJocdJsWPJ3FqQuBnRNUfRBU9o62UHmhfeukV8+ZxjwRLVnAWJeSHvhb3tEhh+kwpvTs+XS1sHecIUfUHUUXPaQ4k2LrTvGFtSPe+tI4B+kJrUQrzFqWnzYwHD5HS62/16o5LRNUfRBVA/dOoLl4u8eVDJTnyyPIFzRcs7rW1KUTVH0QVgDeKEz+R5PQzJDnm2PQ0hr21tEpU/UFU0X16pprmwH4fkCPB9l0SPvyIJAMHSnTlVdK2eXuvnGmJqPqDqKLbglVr00NoojvvkuLUaez1i/xqKUhhyXIpjp8gwer1vXYFJaLqD6KKbit8Oy3d+SM5ZZAUP5yY7mVpGwfkgs70NTT36t7pRNUfRBXdY96YSi++LMmxx0ky6FQpzJrTp6eDA7pEVwE7XA1MVP1BVNE9Zqk0vOdeSQYMSC+zFezcw/GpqB3mtRps2yXB0pXpxSBcvXaJqj+IKrol2LhVwvuHS3LKKRLed791DJBLGtCGZimNHiPxeedL6ennnK1lIar+IKroHj1p+Y4GCVavS3dYso4B8qo5kOiWWyU5+hiJh5wnBd3Rzjaum4iqP4gqeoZuj+qlPSmBHmOWVvXUhfH556cnhYiuuVYCPcymh1/LRNUfRBWA13RNS2nMWElOPlnis86WwozZPX7cNVH1B1FF1+j2qD3N6YXJOfEDal2wdIWEDzwk4TPPSbB+s1lSJaroGqKKrmlqS+foi5M+l2DlWsKK2qare3UGkR2V0E1EFV0SbN8t4YgHJDn+hHRHj2DFaus4oGY4OpxGEVV/EFV0nnnzCTZukfjMs0T69ZPw6Wcl2LrDPhaoVTsbzNJro/2+TiKq/iCq6LzGVinMniMyYEC6x6Re+YPVv6gbOtO4dKWURo9NzxamF9+3jusEouoPoorO290kxU8mS3LyKelB84WZP9rHAbWotSil9z6Q+IwzU8UJH3d7WytR9QdRReeZJdVg+WopvfV2eU5+/Sb7OKAW6bGri5ZKfPnlIgMOl/jCiyRYttLEtuvHrhJVfxBVdJ3u2OFw5w6gz5jXdemNt9O1MXq2pfChR8pXtrGN7QCi6g+iCgAWujNe+NjjEp9/gZQ+mNCtVcBE1R9EFQBsmgMJlq9KL2eY7t3ejUvDEVV/EFV0ip4XtfDTgnSbaltDU5feaIKlGyV8YrzE54yQ5LdXifziQrd+M1TiU++RcOTr5g1yufU5AVY9tInDi6g2F8zv+ZVEVz4hyeE3iPzyIvv02Bn/eLEkA2+W6IbRUpw43f5zc4aoolMK33wn0VVXmxf5jVKYv6hzh9LsajFvLK/YJ55eFF39tJkp2Gx/jsCh6Ou9sbXTh5DVe1RLr02R5LBrrdNbT0qOv02Kn8ywPoe8IKroON15Y+yLIkccIcmJJ0mwxCz1dfDNpbBgnSQnDLNOKH3iX6+Q4hdzrc8VsGotpnu664xlZ/d4r+eoRre9YJ/GHAofe9f6XPKAqKLjtu2S6L77Rfr3l/iCC8s7bnRg1ViwepskR9xonTj6WuG7hdbnDOyntZAeVhMNvUKSUwZJ+OyYTl0erl6jGt0y1jpd9Ybw8fetz6mvEVV0WGHhEokvu1ySY441c4qjOrw9Nbr0MetEkQfJMbdIWyNng0I7zMxjsGO3RNdeJ8lRA8snPZk+q8PbW+sxqqWXJ1unqd5U/Cx/J54hquiwYPU6KT03RqK775HC1GkdekMpfjDtwIlhxhLZ+1EKRcZ8tO8+/bfeph+tgciwn1ct6Wf9OvtYtXnf93RTOCqfc7zIGfN6L3w1VeIhQyQZOFCiW4dJsGVHh5ZY6y2qwY4mkX8duv+09MF3P0+c5mNbg8jFj+y7T6fX7KP6vm6IT73b+vz6ElFFx+k2pW27ytuTzGfrmCrx4JH7TwhZNDWs+rVObNlElt2nE2cW0Sye+' +
    'jmLbOW4ysfuouT311ifO3CA7bul9OxzEg86VaLLhkqwcEmH9iuot6iWXpy0/3RUOV1XT7tZbPVz9fTfA4qfz7E+x75CVOFMsH67dSLYj05cOpHpxKb/rlw6PZjKiTabSDfuKH/WjyzSSv+dPWY2cVsm6MI3862/A1AtWLRMSq+OS49f9XX1b3zeg/tPQ5XTsX5dORNcOa46qtk4nU6zj2xmWcdkX2fTvGUpN29/V6IKZ3QOsvLFf4BsQskmPp3AGprL9MMyAaWyiU0/ZxNpNrY6nJX3H2SiVKXRH1l/B+AAui+BLp16vKOS/Pry/achnd4qo1r9tcqmzSyaSqf57LbqmeDKr/Vz9eP9LD7tHutz7CtEFe3TufH0RA+dO6G4vpFUTwB7ZROMfuiEpbdVTmBZcLP7MtmEmU1gWTSziGaPq7J4Zo+rH5UTdIVw+Djr7wB0h20aqPW4BtsbD/id9psOs2nQFsHq6Vo/ZxHVr7PpO5tOs6/1o/q94GfJH66zPs++QlTRvj0tUnrhpfRi5IXvZ6RfW8dVOWRUs9BVTlCVE1jlXGp2fzbh6kf1kuihopqNqbytClFFZxzytd1D8hpfa1RVZQDNe8R+026lyum8vageKtA/I6qoLbpz0satEp92uiRHH52e/KFtT8eu1nHQ1b8aQP2onlD09soJrHKCU/pv/dDbs+9pL6rZ19lHNq4Kq3/RGXtX5+oewVOnpXsCh088JYUFi6U4+Qvz7yclum3YPsNuL9t72+0SPvm0mUa+lGDNhgNmVPc+fsVteXLA6t9q1dNypnr6bC+q2XuFfmTfU/l4Bqt/UVvMxF6Y9oPIkUemUS1O/Ng+zsK6o1IWQf3IJpzq+3RCyiKaBVQ/60f1hJV9TzZhZhNlFs9sopw8s/y91SH/GTsqoTP2Rs/MdIYjH0yP3dazjEVXXiXxOedKeOfdaVyDxculbetOaTPvnenpDbfuSHd0Kn76mUS331ke++BDJsZL9ru0XN6jesCOSpXTbhbOymkwm+4qx+l92XRd+X3ZtJyN1TF6fzau8ucaefs7EVUckl6dozT6eZHDD5d48BApzJhtHXcwBxxSk00clR+VocuiqB9ZQLPAVn/oxJZNeEvW7RuThTj7vuxxKifSiufEITXorMroFeYvLJ9p6aijJLrueinMntuxy8SZyBZm/lg+l/Y110rxm+/23pf3qB5wSI3KAqkfldNYFsvso/I+/bdOozr96kfle4Hel31dHdzs+w0OqUFNCTZvk/DxUWZO/BiJ7rwrPQGEbdzBWE/+0JOyUFrmYDuKkz+gsyqjp6twNarhw49KsHZjeYm0I4fa6BgzNlizXsJHHpPoxpvTtUJ6X96jaj35Q1dkUa0KZUdx8gfUHp3oV6yW4tdTpTBnnrTtarSPOwSnpynsZlQ5TSG6Io3enS+mp+7UpdPSM6MlWLmmfLiNZfwhtRTSSymWnny6fPWnxcuk9PqUXEdV9chpCrsZVU5TiNqlc9X6htGROfAqnFAf9Sa9buhtz0v40CMSDbujfBnEThy3egDzvYW58yW69TYJH3/CBGuShHflO6qKE+ofiKiiV3DpN9ST0rgpEl07SpKTT5HC1992aQ3OAXbtkeKUryU59TSz1PpOuiRsHZczXPptf0QVB6dLpjr33ZVVWjZcpBx1ovTCxxKfPSy9ak2wYYt1TFfoNlndaSm6/kETqzHWMXnERcr3Iao4KN2Wml6Q2XzusbAawdKNEj4xXuJzRkjy26usE0+P+s1QiU+9R8KRr0th1nLrcwI6I3zqXUmOvcIssb4hbTsarGO6Qi9YUXr5NRNsE9Ybn7aOya3mQnm1+JVPSHL4DSK/vMg+PXbGP14sycCbJbphtBQnTrf/3JwhqrBrbJHSG29JfMaZ6bF3gR5r14XtqUA9Ch8ZZ8JxUfnwGd3b1zKmS/S48B9mmSWyi9LVy9YxyLVOR3XBD+vk60tfsT4Y6kewfrNE99wrMmBAerhA204zN05UgXTP3/iU2yU5bIgE6zZ2bwelaron8Mq1khxxtsSn3p77PYBxIKIKq8Kc+RJffIkkxx4npedGd/h8v0C9S6N68jBJfndu+UITPTmzqZtZtu+SpP8ZEg8iqrWo01Fd+ukC+7pvAPBAPGRkOaq/H1zentrDUdUdn5L+Z5ql1eutPx/5xpIqrAo/LZDS82MlfGxUuiq4J3dUAmpZuqRqliKTfudLsHRF+dqqlnFd0tQmwcIlkgwcIvGpd7CkWoOIKuz0TErbdpV3UGrhjENAJo3qaXeZ8F2Wnhi/bXeTdVyX7NwjxYmfmKAOlfj0u4hqDep0VNn7F4DvSqMnmKXV69Mr1ARbtlvHdIVeZjEcPkLiS++U6ObnrGOQb0QVADqp9MpkE76R6aXb0su2deSqNO0x76+62UWvBhXeP1bC28faxyHXiCr2pztKbNpanvtmj1/AKj3JwS3PmbBeJuGzoyXYsLl7OyyZ79XDc/TC5fEVV4qesakWzv2LAxFV7KM7I23ZIfGVV0l43/1S+GGmfRzgufQqNXe8KMXPpkg85DwpfvRp904C0dAsxffGS3ze+VL88hspjfuC7ak1iqhin4YmKX7xpSQnnCjxmWdK8dPJ9nGA59Ko6pLknhYpjRlbvsi47rTUlbCaxyhO/Dh9jNILL5Uf0ywJE9XaRFSxl+7pG456UpIjj5L4wovK10+1jAN8l0b15+jpIWelsS9KdP2N6bmA01XBHTnLUnNQ/t6XXi1fk9V8zk7OX/n4qC1EFXulpya8fKhI//7lvRrXbbKOA3xXHb1gzYY0qNH1N6TXWC1O+jw9hnXvvgkaWdXQLMHm7RIsWZ6uCQoffCj9ntKbb5dPeXiQx0ftIKrYS3dQ0jnm+Oxzev74O6CO2KKnx3UXvp8h0U03pxehCO+8Kw1t8YuvpDDzRynM+FGKn38ppddel/COO9Mx0c23pCfQD7bv3u+xiGrtIqrYR/debGhKd+sPtu20jwGQRs92irqeRFRrE1HF/jSsupqqJ89nCvhEpx09daHucPTKZwfGUo8/1VXCOobprO4QVQBwjNW5/iCqKM8t6xlhGprt9wPoFqLqD6IKadvdKIXpM9MD2INFS3vmlGsA9iKq/iCqkGDVWoluv0OSo46S8P7hB+yJCKB7iKo/iCqk8N10iQcPluTYY6X04ivStqvROg5A1xBVfxBVpMfSJccdJ8nJp6Srgbt1DlMAByCq/iCqvmstSumZ5yQ5ZVB6YvBg+67yifVtYwF0CVH1B1H1nQmonuwhPfPL2+/axwDoFqLqD6IKAI4RVX8QVQBwjKj6g6gCgGNE1R9E1VctBQk2bpHCvIUSrF7P2ZQAh4iqP4iqr/a0SHHSZxLrJaoeflSCJSvs4wB0G1H1B1H1VLCjwcT0EUkGDpToiivLpye0jAPQfUTVH0TVR20lCTZtk3jwEJH+/SV8bJQEm7fZxwLoNqLqD6Lqo+a2dFuqDBggiYlq8cOJ5Wuo2sYC6Dai6g+i6iPdSWnVWgkffFiim26Wwpx59nEAegRR9QdR9ZFeP7WxVYL1myRYvkqCnQ32cQB6BFH1B1EFAMeIqj+IKgA4RlT9QVQBwDGi6g+i6plg5RoJH3pYwsefkMK8RelJIGzjAPQcouoPouqZ4tdTJT53sCSnnibFSZ9zekKgFxBVfxBVn7QUpPTquPQsSskJJ0ph/kJpa2qzjwXQY4iqP4iqT3bukXDkgyL9+kk85Dxp291UPrzGNhZAjyGq/iCqHgnWrJfw9jskOfGk9CT6nEUJ6B1E1R9E1Sca0a07JdDLvS1ZzlIq0EuIqj+Iqm80pM2BtJn/l9b7AfQ4ouoPogoAjhFVfxBVH/x8rt90T9/Won0MAGeIqj+Iqg9aClKYv0gKM38sXzeVHZSAXkVU/UFUfdDQLOE990py/PES3XV3uhewdRwAJ4iqP4hqvdNVv9t2SXzmmZL06yelUU9K26499rEAnCCq/iCq9W5PS7raNzn66FTxvfFsVwV6GVH1B1Gtd7sapfj+B5KccorE550vhe9n2McBcIao+oOo1ruGZin8tEBKTz8r4VPPSLBmg30cAGeIqj+IKgA4RlT9QVQBwDGi6g+iCgCOEVV/ENU6FmzbKYVFSyVYu7F8RiVOoA/0CaLqD6Jar0xAC9N+kOja6yQcMVKCVes4kxLQR4iqP4hqvWoOpPTa6+kJH5KBA6WwYhVRBfoIUfUHUa1TwYYtEg4fITJggMSXXibBjgbrOADuEVV/ENU6VZi3KI1pcsyxUnrqmfR4Vds4AO4RVX8Q1ToVLF4m4WOjJLrhRil8NbV82TfLOADuEVV/ENV6tadFgnUbJVi2UoLN2znfL9CHiKo/iCoAOEZU/UFUAcAxouoPolqP9CQPnOgByA2i6g+iWm9ai1J66RUpvfyqFObM49hUIAeIqj+Iaj0xAQ02bZXk9NMlOekkKY19iagCOUBU/UFU68meFilOnSbJ8ccbJ0jxvfH2cQB6FVH1B1GtI8H23VJ6bkx6WsL4/AukMGuOdRyA3kVU/UFU60iwZYeE99wryZFHlk+iv3aDdRyA3kVU/UFU60lja3qpt+Kkz6Tw40/S1tBkHwegVxFVfxDVemT+P+lVajisBsgHouoPogoAjhFVfxDVeqHn9mXpFMglouoPolongo1bynv76nVTOXk+kCtE1R9EtR7sbpLi+A8lOftsia6+VoKtO+3jAPQJouoPoloHgtXrJbrrHpHDD5foGhPVLdut4wD0DaLqD6JaBwozZkt83nmSHHOMlJ4fK8HOBus4AH2DqPqDqNYBXfUb6/l+Bw2SwtTv0tMV2sYB6BtE1R9EtQ4Ufpgl4QMPSnTTLdK2fTc7KgE5Q1T9QVTrgVky1VMUBpu3E1Qgh4iqP4gqADhGVP1BVAHAMaLqD6Jaq/TMSc1BebWvHpfKzklAbhFVfxDVWtVSkGD1OonuvV/Cp5+Vwpz59nEA+hxR9QdRrVVmybQ46XNJTj1N4nMHp/+2jgPQ54iqP4hqrdq5R8LHRkly9NESXzZUCvMW2scB6HNE1R9EtRa1ldJTEcYXXSzSv7+EDz4swcat9rEA+hxR9QdRrUUa1Q1bJBp6hcRnnSWlDz+StqY2+1gAfY6o+oOo1qrWogTrNknh+5nm80b7GAC5QFT9QVRrmR5W01LgLEpAzhFVfxBVAHCMqPqDqNYaXTrVJVOWToGaQVT9QVRrza49Upg9V4pffi3BspXS1thqHwcgN4iqP4hqjQlWrJHo1tvS41PDUU+UT1FoGQcgP4iqP4hqjSl+N12Sc86V5KiBUnrtdQl27LaOA5AfRNUfRLWWtJWk9MZbJqhHSXLscVKYO5/Vv0ANIKr+IKq1ZE+LhM88a4J6rMRmaTXYbpZS29hhCcg7ouoPolpLzFJp4YdZUhozVkrj3igfo2obByBXiKo/iGot0sNpWO0L1Ayi6g+iCgCOEVV/EFUAcIyo+oOo1gI9i9KWHRKsWmc+b2dbKlBjiKo/iGotaA6kOPnz9KQPpWdHS7B2g30cgFwiqv4gqrWgsVXC4SMlGThQ4muulWDJcvs4ALlEVP1BVPNOV/3u3CPx2WeL9Osn4cOPSpsen2obCyCXiKo/iGreNbVJ4aeFkhxzjMiRR5qJ851yaG1jAeQSUfUHUc27Zo3qAomG3S7R9TdKYcZs+zgAuUVU/UFU805P9NDQJMHKtVJYuFSC7bvs4wDkFlH1B1EFAMeIqj+IKgA4RlT9QVTzTndKYsckoKYRVX8Q1RwLVq2V0tPPSunV1yVYtpKT6AM1iqj6g6j2pZaCBGs3SmHaDyac4yR88GGJbr/TuEPCESMluvteiU87XZJBp0px0ufStrvJ/jgAco2o+oOo9gWzxKlLocUPJ0r46GMSDbtDonvvk/CBB9OTO4SPPGb+/VB6GE085DxJTjjRjHs8PV61bVej/TEB5BZR9QdR7W0mioUFiyUc+aDEF14s4T33SeHLbyRYvrp8pqSmtrKdeyRYvS69KHn4+BMSX3SxRLcNk8K330vAGZWAmkJU/UFUe1NzkEYxuu56ia65Tgozf5S2hmb72EqtRQkWL0vP/xtfPlRK731QDq9tLIDcIar+IKq9KA3qjTen206DDVvSsyV1eM9evdzbtp1Seu11iYZeKaX3TVi5BBxQE4iqP4hqb0iXNJdLdMut6bbR9Lqoeqak6nHt0cfZuEWKb70r8cWXpKuGO7SkC6BPEVV/EFXXdEl0T4uETz2T7tVbmD23e0uYGtaVa9NtsrqncLB+E8exAjlHVP1BVF1rbkuPMY0HD5biR5+mOyBZx3WGiXThx58kOf0MKXw3naVVIOeIqj+IqmPBjt1Sev1Nia6/QYKlK6xjukIfN7zr7vLq5HUbrWMA5ANR9QdRdSzYsFmiW2+T0tgXJdi83TqmS8zSqi756p7E6Spl2xgAuUBU/UFUHdOdknTVb2HqtJ49I1JzIMGipRJfcqkUv/jKPgZALhBVfxBVx/SkDslxx0uwcEkaQtuYLtEdlrbsSM+4VJz4sX0MgFwgqv4gqo7pTkrJkUeW99LtymE0B6N7/Da2SnzuuVIc/6F9DIBcIKr+IKqOBctXSXL0MRKsWGOi2oMna9Cobt8t8eAh6TmErWMA5AJR9QdRdUyPKU3OOLN8ooY9LdYxXaJXuFm5Jj0ncHHyF/YxAHKBqPqDqDoWrNuU7qFbeuMtCbbutI7pksZWKU75WqKrrykH2zYGQC4QVX8QVccCPV/vmLHp2ZR0ydI2pkt27kkvGxfePzy9jJx1DIBcIKr+IKquNbakx5HG518gxa+m9szZj5raJFiyvLw99ZPJJrAN9nEAcoGo+oOouqY7FO1ukujOuyUc8YAEy1Z1by9gPZRmw5Z06TceemV6zdUe3asYQI8jqv4gqr3BRK8wa45EV16VnlmpbYdZsuzKSfD1e3Y1SvHTz8pLqZM+T7+2jgWQG0TVH0S1tzQHUhw/QaJrrpXSy6+WVwN3Nqx6asJPJkl0xZVSem5M1x4DQK8jqv4gqr0o2LZLihM+SvfYDR95rLzjUmOrdex+dJXv+s1SemVc+r0a1GDTNoIK1Aii6g+i2sv0pPq62ja6bVh6PdTSuDelMGdeGs10Va5ea1WZpVANZ7B4mRQ/mCDhfcMluvFmKb31jgRruSoNUEuIqj+Ial/Y3SSFeQslfPhRiW66WaJht5ulz9FSfG+8Ce5nUvx8SnrqwdILL6WXd4tuuFGie+6VwrQfevZYVwC9gqj6g6j2FV112xxIYdFSKb7/gUT33Z9ecSY+7XTjNIkvuCA9trX06rj0guTpFW5Y3QvUJKLqD6La1zSUSg+LSRV+ln1tEFOgphFVfxBVAHCMqPqDqAKAY0TVH0QVABwjqv4gqgDgGFH1B1EFAMeIqj+IKgA4RlT9QVQBwDGi6g+iCgCOEVV/EFUAcIyo+oOoAoBjRNUfRBUAHCOq/iCqAOAYUfUHUQUAx4iqP4gqADhGVP1BVAHAMaLqD6IKAI4RVX8QVQBwjKj6g6gCgGNE1R9EFQAcI6r+IKoA4BhR9QdRBQDHiKo/iCoAOEZU/UFUAcAxouoPogoAjhFVfxBVAHCMqPqDqAKAY0TVH0QVABwjqv4gqgDgGFH1B1EFAMeIqj+IKgA4RlT9QVQBwDGi6g+iCgCOEVV/EFUAcIyo+oOoAoBjRNUfRBUAHCOq/iCqAOAYUfUHUQUAx4iqP4gqADhGVP1BVAHAMaLqD6IKAI4RVX8QVQBwjKj6g6gCgGNE1R9EFQAcI6r+IKoA4BhR9QdRBQDHiKo/iCoAOEZU/UFUAcAxouoPogoAjhFVfxBVAHCMqPqDqAKAY0TVH0QVABwjqv4gqgDgGFH1B1EFAMeIqj+IKgA4RlT9QVQBwDGi6g+iCgCOEVV/EFUAcIyo+oOoAoBjRNUfRBUAHCOq/iCqAOAYUfUHUQUAx4iqP4gqADhGVP1BVAHAMaLqD6IKAI4RVX8QVQBwjKj6g6gCgGNE1R9EFQAcI6r+IKoA4BhR9QdRBQDHiKo/iCoAOEZU/UFUAcAxouoPogoAjhFVfxBVAHCMqPqDqAKAY0TVH0QVABwjqv4gqgDgGFH1B1EFAMeIqj+IKgA4RlT9QVQBwDGi6g+iCgCOEVV/EFUAcIyo+oOoAoBjRNUfRBUAHCOq/iCqAOAYUfUHUQUAx4iqP4gqADhGVP1BVAHAMaLqD6IKAI4RVX8QVQBwjKj6g6gCgGNE1R9EFQAcI6r+IKoA4BhR9QdRBQDHiKo/iCoAOEZU/UFUAcAxouoPogoAjhFVfxBVAHCMqPqDqAKAY0TVH0QVABwjqv4gqgDgGFH1B1EFAMeIqj+IKgA4RlT9QVQBwDGi6g+iCgCOEVV/EFUAcIyo+oOoAoBjRNUfRBUAHCOq/iCqAOAYUfUHUQUAx4iqP4gqADhGVP1BVAHAMaLqD6IKAI4RVX8QVQBwjKj6g6gCgGNE1R9EFQAcI6r+IKoA4BhR9QdRBQDHiKo/iCoAOEZU/UFUAcAxouoPogoAjhFVfxBVAHCMqPqDqAKAY0TVH0QVABwjqv4gqgDgGFH1B1EFAMeIqj+IKgA4RlT9QVQBwDGi6g+iCgCOEVV/EFUAcIyo+oOoAoBjRNUfRBUAHCOq/iCqAOAYUfUHUQUAx4iqP4gqADhGVP1BVAHAMaLqD6IKAI4RVX8QVQBwjKj6g6gCgGNE1R9EFQAcI6r+IKoA4BhR9QdRBQDHiKo/iCoAOEZU/UFUAcAxouoPogoAjhFVfxBVAHCso1ENVmyW0lMfSjx4pCS/vUrkFxe68+vLJR50p4T3j5PC9CXW54POI6oA4Fi7UW0uSDjidXv8ekk0dJQUFq23Pz90GFEFAMcOFdVg+SaJT73bGrpe98+XSvHTmdbniY4hqgDg2MGiGmzeJclxt9kD14eKU+Ye8FzRMUQVABw7WFSjq5+2Rq2vJf2vl2B74wHPF+0jqgDgmC2qxcmzrUFLrdosUgpFxnxU/nrYCyKtgez38cF3+3+PjtXv0e+tvL2LwpFv7vd80TFEFQAcs0U1uuwxa8z2xrEyqtlt1SGtpDHVjx6KqvzqMmlrbNvvOaN9RBUAHKuOarCj0R6yix8R2dZQjmNlVDWmlV9X0/uzjyyq2W1ZbPUjuy9b8tWfpT9zxpLy/VXRLk6atd/vgfYRVQBwrDqqhWmL9ovXXho3jd2SdftHNIte9lG5NJoFUr9HP9uiWvkYWTiz+zfuKP+sysf8Wfj4+/v9HmgfUQUAx6qjWpzw/QEB2xtHjZ/KopotvWZLlVkMdYx+n37W7xs90R7VLKLZ42f3H2ypuEJ0+wv7/R5oH1EFAMc6FFWNXeXq2IOt7q2Mo96v4zSc1dFsL6qVYypvq0BUO4+oAoBj7a7+zYJX/WELa2UcNb62D72vvahW/8xsXAVW/3YeUQUAxzq8o1KmI6t/qyNYHc1sXOXSr35k36fjsqVc/T6lj1HxmOyo1HlEFQAcq46qOughNap69W+2mjf70Purv+dgUZ23ct/3Zt+XPV712MrH5ZCaLiGqAOCYLaqHPPlDT8hCmS2ZdhInf+gaogoAjtmiqpyeprAbUeU0hV1HVAHAsYNFlRPq1x+iCgCOHSyqiku/1ReiCgCOHSqqKS5SXjeIKgA41m5Ufxas2Cylpz6UePBISX57lTV+PebXl0s86E4J7x8nhelLrM8HnUdUAcCxjkYVtY+oAoBjRNUfRBUAHCOq/iCqAOAYUfUHUQUAx4iqP4gqADhGVP1BVAHAMaLqD6IKAI4RVX8QVQBwjKj6g6gCgGNE1R9EFQAcI6r+IKoA4BhR9QdRBQDHiKo/iCoAOEZU/UFUAcAxouoPogoAjhFVfxBVAHCMqPqDqAKAY0TVH0QVABwjqv4gqgDgGFH1B1EFAMeIqj+IKgA4RlT9QVQBwDGi6g+' +
    'iCgCOEVV/EFUAcIyo+oOoAoBjRNUfRBUAHCOq/iCqAOAYUfUHUQUAx4iqP4gqADhGVP1BVAHAMaLqD6IKAI4RVX8QVQBwjKj6g6gCgGNE1R9EFQAcI6r+IKoA4BhR9QdRBQDHiKo/iCoAOEZU/UFUAcAxouoPogoAjhFVfxBVAHCMqPqDqAKAY0TVH0QVABwjqv4gqgDgGFH1B1EFAMeIqj+IKgA4RlT9QVQBwDGi6g+iCgCOEVV/EFUAcIyo+oOoAoBjRNUfRBUAHCOq/iCqAOAYUfUHUQUAx4iqP4gqADhGVP1BVAHAMaLqD6IKAI4RVX8QVQBwjKj6g6gCgGNE1R9EFQAcI6r+IKoA4BhR9QdRBQDHiKo/iCoAOEZU/UFUAcAxouoPogoAjhFVfxBVAHCMqPqDqAKAY0TVH0QVABwjqv4gqgDgGFH1B1EFAMeIqj+IKgA4RlT9QVQBwDGi6g+iCgCOEVV/EFUAcIyo+oOoAoBjRNUfRBUAHCOq/iCqAOAYUfUHUQUAx4iqP4gqADhGVP1BVAHAMaLqD6IKAI4RVX8QVQBwjKj6g6gCgGNE1R9EFQAcI6r+IKoA4BhR9QdRBQDHiKo/iCoAOEZU/UFUAcAxouoPogoAjhFVfxBVAHCMqPqDqAKAY0TVH0QVABwjqv4gqgDgGFH1B1EFAMeIqj+IKgA4RlT9QVQBwDGi6g+iCgCOEVV/EFUAcIyo+oOoAoBjRNUfRBUAHCOq/iCqAOAYUfUHUQUAx4iqP4gqADhGVP1BVAHAMaLqD6IKAI4RVX8QVQBwjKj6g6gCgGNE1R9EFQAcI6r+IKoA4BhR9QdRBQDHiKo/iCoAOEZU/UFUAcAxouoPogoAjhFVfxBVAHCMqPqDqAKAY0TVH0QVABwjqv4gqgDgGFH1B1EFAMeIqj+IKgA4RlT9QVQBwDGi6g+iCgCOEVV/EFUAcIyo+oOoAoBjRNUfRBUAHCOq/iCqAOAYUfUHUQUAx4iqP4gqADhGVP1BVAHAMaLqD6IKAI4RVX8QVQBwjKj6g6gCgGNE1R9EFQAcI6r+IKoA4BhR9QdRBQDHiKo/iCoAOEZU/UFUAcAxouoPogoAjhFVfxBVAHCMqPqDqAKAY0TVH0QVABwjqv4gqgDgGFH1B1EFAMeIqj+IKgA4RlT9QVQBwDGi6g+iCgCOEVV/EFUAcIyo+oOoAoBjRNUfRBUAHCOq/iCqAOAYUfUHUQUAx4iqP4gqADhGVP1BVAHAMaLqD6IKAI4RVX8QVQBwjKj6g6gCgGNE1R9EFQAcI6r+IKoA4BhR9QdRBQDHiKo/iCoAOEZU/UFUAcAxouoPogoAjhFVfxBVAHCMqPqDqAKAY0TVH0QVABwjqv4gqgDgGFH1B1EFAMeIqj+IKgA4RlT9QVQBwDGi6g+iCgCOEVV/EFUAcIyo+oOoAoBjRNUfRBUAHCOq/iCqAOAYUfUHUQUAx4iqP4gqADhGVP1BVAHAMaLqD6IKAI4RVX8QVQBwjKj6g6gCgGNE1R9EFQAcI6r+IKoA4BhR9QdRBQDHiKo/chnVhuZQlmwJZfz8UB7/NpQRXwL+GvlVKE9PC2XS4lDW7AilscU+3RxMS1soO5tCmbU2lFdnh/LwN/afA3cm3f+1zL3sZet96F2PmNf/m3NC+WlDKLtNa1rN9GGbbroqV1FtNfQN49uVoVzwbij/8EQo/214KP/xHsBf/+neUP77iFB+/XQowyaV3wyaWu3TUDUN6uaGUF43byJHvhDK3zwSyn+53/5z4M61530tr5z4svU+9K7/al7/f/dYKMe/HMqHC0LZ0VieTmzTT1fkKqrN5o1iwaZQfj86lP98n/0PAvhMg3jJ+6Gs22mfhqrpG8Z780L5s5HlONseE+4R1fzR6eFvHg3ly+XlJVbb9NMVuYqqvgHc9Vko/+sh+x8BQCj/MKq8+so2DVXTpVqdI/8jy+Og9xDVfNKZ1CFvh7Jim3366YpcRVVXU/UbU148t/0BAITyP8xS50Xv2aehap8sDuX/mrlx2+Og9xDVfNKlVZ1Jnb3OPv10Ra6iumFXKH9pllJZTQUc3B/fF0r/5+3TULW35obyJ8yk9jmimk+6BkeXVr9bZZ9+uiJXUV1vovqnI+y/PIB9/v1Z+zRU7fUf7d+P3kVU823qSvv00xVEFahBRLW2ENV8I6qA54hqbSGq+UZUAc8R1dpCVPONqAKeI6q1hajmG1EFPEdUawtRzTeiCniOqNYWoppvRBXwHFGtLUQ134gq4DmiWluIar4RVcBzRLW2ENV8I6pAvbm71Cn//kxJWtvaN262/fu7zPbc0S6imm9EFahltlh1Up9F1cb2O2I/RDXfiCpQa2wx6oZcRbWS7XcHUc05ogrUAlt0ekhuo1rJ9jfxFFHNN6KKLvu7x0IZ+mEkA1+KDrjE3n++L5T/93go90yJ5DfPhvJHlkvw6WWS/vyBUP7ywX3+u/l/pipvq/YX5nv0kmXVj1eXbIHptOIh/dszRWlpbd+4Wfbv7zjbc+sk29+oHf/TvF7+4YlQ/vqRA+/7W/Ma/tXTofxJF15Pehm8//VQKP/8VChHm2ng6omRXPBeJP/H8nPUuW9HMmZGnL6Gs+nhT4cf+Pr+85HlaaP6+9Uvn4zk85HfyLiT+yaq/9U83//98IHTs97+L09H6XP/pydDuXh8lP5dKsdU+8OYUO76IpJ/NOP1/eO/mcf4n1V/i0r6vlALl/Ikquiy3zwTybi5sZxv3kj+uOrFrhPAWW9F8u2aRI54IdrvvsyxL0cy2rzJvDArTj/rYw37LErffPRr9eZP5dt1jL4hjTWfX5wdp2+GtsesK7aotMsWs0Prvaja2H6Hdtj+Vofw2+dCGTMzTl+P1fdd+1Esr5vXmMZRr4dZeZ++pnUG7vhXIjnzzUguej+SGz6J5b4vY3l8WiwvmdfhG+Z735kfyweLYnlvQfn1+/+ZmcnKx8kM+yyWHzcm6YXeszhc9kGUft/r5jWu3poXyzPTY/nD8/Zp5nAzLe145Rt5/ZRyVPV5n/9uJA99E1sN/yqWPzOhy75fn9udX8TyYMWYS0wANWaHjY7kbnNfdvvIr+P099XY6ffq3+c3z0bp9KfPW0Ont+kMtM60fLEiSd8T9Dm+Zn6Xo160/w6ZQa9H6e/7hzFR+n5xnvk9Xp1T/nvq7dnfRL1r/kaPfhvLv5qfb3usPCGq6LLfmYnwvQVJOlHqkqNOYDr3rhPh35o3Dp1wP1uepG8QepvOzer92ZvX5WYp94f1STqx3DIplolLym9Sg9+J0q/vMK+NhVsT+XJlIvdOieV286b07A+xrNyZyK/NXHH186kbtpAclC1UnXBXQf7t6YI0t7TvtVmFdPwh2X5Gp9h+x4Ow/e0sTnw1Sl+Hulal8nZdOn38u1imr0vSeFZHVWPxL2YpViOikdCZu+wNf7aJ4/IdSRqBmz+NZYh5zR5mlrw0WlmEqt1lgrXAvJ512sii+pQJ6OpdiYwykVZvm8f/bm1inQFQukTc8sZUeePnqP7SxOzlH2OZY56PPrfM+wtjmbo6ke3Nify1WbLMvr+/mRaXbE/kk6VJGvM5m5J07N+PCtPpeK75evKy8vfrdDdrQ5IGV79X/z467gnzPH8wfzP9nTXqf2lofJsKItd8VA7zDDNd32tmPs42v4c68bUonZnInoc6/Y3y+0f/seWonmYi+4r5XdbsTuTTpbE8+X2c/iz9/fRvNHFxIr+qgemeqKJTdMLSCUCXFAeNi9K5Uw2grsL5C53bNXOdp5jbda5zysryHOaFZkn2JDNRnWDe3H5vQpytutWoTjATyr+ZuU99XJ3Lf94sUegbWbY6af6WJJ0r1jc9nbh1QtYQ/9NTdRpVWzysbEGqYoueRY9GtSNsz/UAtt/ZwvY3rKJv6l+sKL/BV96ur1dd8/H1qmS/2zMaPn0P0SUpnYHUGTmNmMZh2ORYxi9KDrnkpKtI9XX8N2b835nYPmJmHjXE+ni6aUQfW5dKJy/b9/OPNEt3Os1URlVnRHWVqz7GOW9H0vbmVPngjFfSr3V602nmoalxOuavTOCUbpq51Ew3rSXZb3W0rjVaZqKqS5H6vHSmQpeydUnzigmRTDJB1XDrzIGuwl1kZgI0mtn3699EH0//bhMWx+nj6UzzFBPgVSZ8GukVZqZ3c1P5a42y0kjq4+qMik7LvzBx1ulf3z/OeDNK3090Juf/PR6ZGYtEHja/j/4O+rN1lfp3a5L088FWi+cJUUWn6EShc/7fm7lpnXCai4nsaElknZm7HGJC+rmZSJrNHKvOWVbasCeRLWa8RjRbHaUTlc59/va58upjXRLVifVfn9XtXFE6sX9j5rb1jUO3h/UzE++j5k1AJ3ydKKufW82zReMAtgD9zBawQwpS//Z0IE3N7Xt1Znl8+2w/6xBsv8tetr9BFdvfsoK+GU82S6q6urHydo3ja2ZJc7xZKqu8vZLO7GlIKun7ynUf69JcIv9uXrvV9yv9Pg1Av+dD+dgsFerSpy6BtRRFZprITDNf60ymBvFQUdUw/9LMsL5inqc+hi7pRu9OlW03v5p+fc+U8mYSXZOjM6vZz9dpTANsi+qSbWZm4JlyrEd8Vf79s6hONKHU30l/R13lXR1VpY+vQT7m5TCdmR7xdSRLTah1hkPfHzTYugR6vPn9Kr9PafB1Otf3hG1mKVrfP/R9Qf8e+v9D3wdONjPluiSt/2+umhjJWvN3u/GTSP6qYok7z3o0qguWbxO1aOUOmb9sa/pZLVyxfe+/szFKx2T/1jGVX1fK7svu16/18+JVO/c+ZvYzKu/X8dn3Vv7sysfKxlfer19X3qY/J7tPb8sev9KuPW2yuzHYq/rr7LbK27N/Z7dX6+h92eNlt1X+u1L1/ZVjKn+X6r+Nyv6G2d8ku63yb6n3Zf+et3TLAeOyv1t2Xyb7nsqfdaj79f9H9u9sTPbvytuUPqfqn1c5tvLflb9bpcqfr5/18fTf2fjK78/G274v+3yo79Pb2j4d/rMR0mo+q8qvs/uzf2djbF9nt1V+7/6373/bvvtG/HzfvudQvt2YVPm8Rsiql6+Xxon37aW/j/4u+jn73bJ/Z7+3yn5fVfn7V8vuy+7Xr/VznqZ/lX1fdn/27+x75i/T16E+J71Pn8cWc5+O1edTvk8/V47Tz5Wy+yvvW2T+vdg8jn5e+PPX2b8r6ZjK+7Ovqy3Qx//539lYvU3HVz6G3pbR57N4lf69zPeZf2fPMfv90uep31txX6byd6h+jir7Ort/6eqde/+djVm8Sv/O5eegPyezxIzNfnYmG6OfK/+tYytvz2S/h/5bP+vjLTH/rnwe2df6WZ9P9jm7r/Lzob4vuy27fW9UsxdU9b8rX2AZ/VrfpPRz5Qu2cqx+ziYEpbdVvtAzlW/k2edqenv2eNnX1Z+zf+uY6ueU3Z7J7s9ilX2uDFb2deXt1Z+zf1feXvl1pvL2SnvHNLTu/Xq/29uR/V7Z769/S1u8Mtnvnd2nX1fep49VfZ/eVvn/Lfv+ynHZ49ruzz5X/ls/Z9+T3ZZFLxurX2fPp3Jcdlv2e+vnTDYuuy/7HtvnjI7V55L9jpX3Kb2t8nesHKefs9dvZdCy6Km9UUvpfeX7s8DtC132+cAIZ7cf6nurx++7b//AZla/coM0fnT/3qhW/k6V/9bPlf+vsq/19678u1SP1c/V/2/yNv3bvkf/nd2e3ZZFZG9MzJuofq4MTXZ79nUWUlV5e/ZvfSPOIjh/6eb0aw2dvknrbWn0Kj5Xy8ZW3q+Pk73RZ49TabH5fdL7sudgxmbPS/9d+Ttk9+ltGq5snN6v9PnqY2Uxyb7Wz5ns6/RnVvxbPy9ZrdOcvibMbSasC5bre5e+nvTr8t83ex6Z6ueWfZ3JxmX3Zd+Tfc6eZ/aclT4fDeGyNbsOuE/pbXp/FtHKcfq5/Hctj9Hblq7eKf8/bnUIO6ybMyUAAAAASUVORK5CYII=' // 图片

    const getCanvas = () => {
      let oCanvas = document.getElementById("myangle");
		  let canvFas = oCanvas.getContext("2d");
      oCanvas.style.background ='url(' + base64Img + ') no-repeat';
		  oCanvas.style.backgroundSize = '100% 100%';
      let image = new Image();
		  image.src = base64Img;
        image.onload = () => {
            oCanvas.width=image.width;
            oCanvas.height=image.height;
            canwidth = image.width;
            canheight = image.height;
            drawPoints(point1, point2, point3);
        }
    }
    const drawPoints = (point1, point2, point3) => {
      let canvas = document.getElementById("myangle");
      let ctx = canvas.getContext("2d");
      //获取屏幕分辨率
      // ctx.width = canwidth;
      // ctx.height=canheight;
      ctx.lineWidth = 2;
      ctx.strokeStyle = "red";
      ctx.fillStyle = "red";
      let sw = window.screen.width;
      let sh = window.screen.height - 140;
      if(point1.x > sw) {
          point1.x = sw;
      }
      if(point1.x < 0) {
          point1.x = 0;
      }
      if(point1.y > sh) {
          point1.y = sh;
      }
      if(point1.y < 43) {
          point1.y = 43;
      }
      if(point2.x > sw) {
          point2.x = sw;
      }
      if(point2.x < 0) {
          point2.x = 0;
      }
      if(point2.y > sh) {
          point2.y = sh;
      }
      if(point2.y < 43) {
          point2.y = 43;
      }
      if(point3.x > sw) {
          point3.x = sw;
      }
      if(point3.x < 0) {
          point3.x = 0;
      }
      if(point3.y > sh) {
          point3.y = sh;
      }
      if(point3.y < 43) {
          point3.y = 43;
      }
      ctx.setLineDash([0]); //设置虚线间距
      // 画点
      ctx.beginPath();
      ctx.arc(point1.x, point1.y, cPointSize, 0, 2 * Math.PI);
      //ctx.stroke();//空心圆
      ctx.fill(); //实心圆
      ctx.font = "20px";
      //ctx.strokeText("(" + point1.x + ", " +  point1.y + ")", (point1.x - cPointSize), (point1.y - cPointSize));
      ctx.beginPath();
      ctx.arc(point2.x, point2.y, cPointSize, 0, 2 * Math.PI);
      ctx.fill();
      ctx.font = "20px";
      // ctx.strokeText("(" + point2.x + ", " +  point2.y + ")", (point2.x - cPointSize), (point2.y - cPointSize));
      ctx.beginPath();
      ctx.arc(point3.x, point3.y, cPointSize, 0, 2 * Math.PI);
      ctx.fill();
      ctx.font = "20px";
      // ctx.strokeText("(" + point3.x + ", " +  point3.y + ")", (point3.x - cPointSize), (point3.y - cPointSize));
      ctx.setLineDash([5, 10]); //设置虚线间距
      ctx.beginPath();
      ctx.moveTo(point1.x, point1.y);
      ctx.lineTo(point2.x, point2.y);
      ctx.lineCap = "round";
      ctx.stroke();
      ctx.beginPath();
      ctx.moveTo(point1.x, point1.y);
      ctx.lineTo(point3.x, point3.y);
      ctx.lineCap = "round";
      ctx.stroke();
      computeAngle(point1, point2, point3)
      ctx.font="16px Arial";
      ctx.fillText('角度:'+ angle,20,30);
    }
    // 计算getBoundingClientRect
    const getOffsetPosition = (elem) =>{
      if ( !elem ) return {left:0, top:0};
      let top = 0, left = 0;
      if ( "getBoundingClientRect" in document.documentElement ){
        let box = elem.getBoundingClientRect(), 
        doc = elem.ownerDocument, 
        body = doc.body, 
        docElem = doc.documentElement,
        clientTop = docElem.clientTop || body.clientTop || 0, 
        clientLeft = docElem.clientLeft || body.clientLeft || 0,
        top  = box.top  + (self.pageYOffset || docElem && docElem.scrollTop  || body.scrollTop ) - clientTop,
        left = box.left + (self.pageXOffset || docElem && docElem.scrollLeft || body.scrollLeft) - clientLeft;
      }else{
        do{
          top += elem.offsetTop || 0;
          left += elem.offsetLeft || 0;
          elem = elem.offsetParent;
        } while (elem);
      }
      return {left:left, top:top};    
    }
    //开始画图
    const movestart = (ev) => {
      let canvas = document.getElementById("myangle");
      let { left, top } = getOffsetPosition(canvas)
      var e = ev || event;
      startX = e.touches[0].pageX - left;
      startY = e.touches[0].pageY - top;
      drag(Math.ceil(startX), Math.ceil(startY));
    }
    var canvas = document.getElementById("myangle")
    canvas.addEventListener("touchstart", movestart);
    //拖拽函数
    const drag = (x, y) => {
      let canvas = document.getElementById("myangle");
      let range = 30;
      if(x >= point1.x - range && x <= point1.x + range && y >= point1.y - range && y <= point1.y + range) {
          dragPoint = point1
      } else if(x >= point2.x - range && x <= point2.x + range && y >= point2.y - range && y <= point2.y + range) {
          dragPoint = point2
      } else if(x >= point3.x - range && x <= point3.x + range && y >= point3.y - range && y <= point3.y + range) {
          dragPoint = point3
      }
      if(dragPoint) {
          canvas.addEventListener("touchmove", moveing, false);
          //鼠标移开事件
          canvas.addEventListener("touchend", touchScroll);
      }
    }
    //画图中
    const moveing = (ev) => {
      let canvas = document.getElementById("myangle");
      let ctx = canvas.getContext("2d");
      var e = ev || event;
      e.preventDefault();
      let { left, top } = getOffsetPosition(canvas)
      let ax = e.touches[0].pageX - Math.ceil(left)
      let ay = e.touches[0].pageY - Math.ceil(top)
      dragPoint.x = dragPoint.x + (ax - startX)
      dragPoint.y = dragPoint.y + (ay - startY)
      startX = ax;
      startY = ay;
      //鼠标移动每一帧都清楚画布内容,然后重新画圆
      ctx.clearRect(0, 0, canvas.width, canvas.height);
      drawPoints(point1, point2, point3)
    }
    const touchScroll = () => {
      let canvas = document.getElementById("myangle");
      canvas.removeEventListener("touchmove", moveing, false);
    }
    // 计算角度
    const computeAngle = (point1, point2, point3) => {
      let line12 = Math.sqrt(Math.pow(Math.abs(point2.x - point1.x), 2) + Math.pow(Math.abs(point2.y - point1.y), 2))
      let line13 = Math.sqrt(Math.pow(Math.abs(point3.x - point1.x), 2) + Math.pow(Math.abs(point3.y - point1.y), 2))
      let line23 = Math.sqrt(Math.pow(Math.abs(point3.x - point2.x), 2) + Math.pow(Math.abs(point3.y - point2.y), 2))
      // 勾股定理求角度
      var angle1 = 360 * Math.acos((Math.pow(line12, 2) + Math.pow(line13, 2) - Math.pow(line23, 2)) / (2 * line12 * line13)) / (2 * Math.PI)
      angle = angle1.toFixed(1);
      console.log('angle', angle);
    }
    getCanvas()
  </script>
</body>
</html>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/266584
推荐阅读
相关标签
  

闽ICP备14008679号