赞
踩
里程计的历史渊源是什么?
里程计是一种用来测量车辆或机器人行驶距离的装置,它通常通过检测车辆轮子或机器人轮子的旋转来进行测量。里程计的历史可以追溯到17世纪早期,当时人们开始使用机械装置来测量车辆行驶的距离。这些装置通常使用一个机械计数器,它们可以在车轮旋转的过程中记录里程数。18世纪末期,发明家托马斯·戈德史密斯发明了一种称为“奥多米特”的装置,它使用一个机械计数器来记录马车或自行车行驶的里程。这个装置被认为是现代里程计的早期形式。
随着时间的推移,里程计逐渐发展成为电子化和计算机化的设备。现代车辆和机器人通常使用激光或红外线传感器来测量轮子的旋转,并将数据传输到计算机或控制系统中。总的来说,里程计的历史经历了从机械装置到电子化和计算机化的过程。
mkdir build
cd build
cmake ..
//注意,j8还是其他主要看自己的电脑情况
make -j8
代码:
// // Created by Xiang on 2017/12/19. // #include <opencv2/opencv.hpp> #include <string> #include <chrono> #include <Eigen/Core> #include <Eigen/Dense> //添加头文件 #include <opencv2/imgproc/types_c.h> using namespace std; using namespace cv; string file_1 = "/home/fighter/slam/slambook2/ch8/LK1.png"; // first image string file_2 = "/home/fighter/slam/slambook2/ch8/LK2.png"; // second image /// Optical flow tracker and interface class OpticalFlowTracker { public: OpticalFlowTracker( const Mat &img1_, const Mat &img2_, const vector<KeyPoint> &kp1_, vector<KeyPoint> &kp2_, vector<bool> &success_, bool inverse_ = true, bool has_initial_ = false) : img1(img1_), img2(img2_), kp1(kp1_), kp2(kp2_), success(success_), inverse(inverse_), has_initial(has_initial_) {} void calculateOpticalFlow(const Range &range); private: const Mat &img1; const Mat &img2; const vector<KeyPoint> &kp1; vector<KeyPoint> &kp2; vector<bool> &success; bool inverse = true; bool has_initial = false; }; /** * single level optical flow * @param [in] img1 the first image * @param [in] img2 the second image * @param [in] kp1 keypoints in img1 * @param [in|out] kp2 keypoints in img2, if empty, use initial guess in kp1 * @param [out] success true if a keypoint is tracked successfully * @param [in] inverse use inverse formulation? */ void OpticalFlowSingleLevel( const Mat &img1, const Mat &img2, const vector<KeyPoint> &kp1, vector<KeyPoint> &kp2, vector<bool> &success, bool inverse = false, bool has_initial_guess = false ); /** * multi level optical flow, scale of pyramid is set to 2 by default * the image pyramid will be create inside the function * @param [in] img1 the first pyramid * @param [in] img2 the second pyramid * @param [in] kp1 keypoints in img1 * @param [out] kp2 keypoints in img2 * @param [out] success true if a keypoint is tracked successfully * @param [in] inverse set true to enable inverse formulation */ void OpticalFlowMultiLevel( const Mat &img1, const Mat &img2, const vector<KeyPoint> &kp1, vector<KeyPoint> &kp2, vector<bool> &success, bool inverse = false ); /** * get a gray scale value from reference image (bi-linear interpolated) * @param img * @param x * @param y * @return the interpolated value of this pixel */ inline float GetPixelValue(const cv::Mat &img, float x, float y) { // boundary check if (x < 0) x = 0; if (y < 0) y = 0; if (x >= img.cols - 1) x = img.cols - 2; if (y >= img.rows - 1) y = img.rows - 2; float xx = x - floor(x); float yy = y - floor(y); int x_a1 = std::min(img.cols - 1, int(x) + 1); int y_a1 = std::min(img.rows - 1, int(y) + 1); return (1 - xx) * (1 - yy) * img.at<uchar>(y, x) + xx * (1 - yy) * img.at<uchar>(y, x_a1) + (1 - xx) * yy * img.at<uchar>(y_a1, x) + xx * yy * img.at<uchar>(y_a1, x_a1); } int main(int argc, char **argv) { // images, note they are CV_8UC1, not CV_8UC3 Mat img1 = imread(file_1, 0); Mat img2 = imread(file_2, 0); // key points, using GFTT here. vector<KeyPoint> kp1; Ptr<GFTTDetector> detector = GFTTDetector::create(500, 0.01, 20); // maximum 500 keypoints detector->detect(img1, kp1); // now lets track these key points in the second image // first use single level LK in the validation picture vector<KeyPoint> kp2_single; vector<bool> success_single; OpticalFlowSingleLevel(img1, img2, kp1, kp2_single, success_single); // then test multi-level LK vector<KeyPoint> kp2_multi; vector<bool> success_multi; chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); OpticalFlowMultiLevel(img1, img2, kp1, kp2_multi, success_multi, true); chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1); cout << "optical flow by gauss-newton: " << time_used.count() << endl; // use opencv's flow for validation vector<Point2f> pt1, pt2; for (auto &kp: kp1) pt1.push_back(kp.pt); vector<uchar> status; vector<float> error; t1 = chrono::steady_clock::now(); cv::calcOpticalFlowPyrLK(img1, img2, pt1, pt2, status, error); t2 = chrono::steady_clock::now(); time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1); cout << "optical flow by opencv: " << time_used.count() << endl; // plot the differences of those functions Mat img2_single; cv::cvtColor(img2, img2_single, CV_GRAY2BGR); for (int i = 0; i < kp2_single.size(); i++) { if (success_single[i]) { cv::circle(img2_single, kp2_single[i].pt, 2, cv::Scalar(0, 250, 0), 2); cv::line(img2_single, kp1[i].pt, kp2_single[i].pt, cv::Scalar(0, 250, 0)); } } Mat img2_multi; cv::cvtColor(img2, img2_multi, CV_GRAY2BGR); for (int i = 0; i < kp2_multi.size(); i++) { if (success_multi[i]) { cv::circle(img2_multi, kp2_multi[i].pt, 2, cv::Scalar(0, 250, 0), 2); cv::line(img2_multi, kp1[i].pt, kp2_multi[i].pt, cv::Scalar(0, 250, 0)); } } Mat img2_CV; cv::cvtColor(img2, img2_CV, CV_GRAY2BGR); for (int i = 0; i < pt2.size(); i++) { if (status[i]) { cv::circle(img2_CV, pt2[i], 2, cv::Scalar(0, 250, 0), 2); cv::line(img2_CV, pt1[i], pt2[i], cv::Scalar(0, 250, 0)); } } cv::imshow("tracked single level", img2_single); cv::imshow("tracked multi level", img2_multi); cv::imshow("tracked by opencv", img2_CV); cv::waitKey(0); return 0; } void OpticalFlowSingleLevel( const Mat &img1, const Mat &img2, const vector<KeyPoint> &kp1, vector<KeyPoint> &kp2, vector<bool> &success, bool inverse, bool has_initial) { kp2.resize(kp1.size()); success.resize(kp1.size()); OpticalFlowTracker tracker(img1, img2, kp1, kp2, success, inverse, has_initial); parallel_for_(Range(0, kp1.size()), std::bind(&OpticalFlowTracker::calculateOpticalFlow, &tracker, placeholders::_1)); } void OpticalFlowTracker::calculateOpticalFlow(const Range &range) { // parameters int half_patch_size = 4; int iterations = 10; for (size_t i = range.start; i < range.end; i++) { auto kp = kp1[i]; double dx = 0, dy = 0; // dx,dy need to be estimated if (has_initial) { dx = kp2[i].pt.x - kp.pt.x; dy = kp2[i].pt.y - kp.pt.y; } double cost = 0, lastCost = 0; bool succ = true; // indicate if this point succeeded // Gauss-Newton iterations Eigen::Matrix2d H = Eigen::Matrix2d::Zero(); // hessian Eigen::Vector2d b = Eigen::Vector2d::Zero(); // bias Eigen::Vector2d J; // jacobian for (int iter = 0; iter < iterations; iter++) { if (inverse == false) { H = Eigen::Matrix2d::Zero(); b = Eigen::Vector2d::Zero(); } else { // only reset b b = Eigen::Vector2d::Zero(); } cost = 0; // compute cost and jacobian for (int x = -half_patch_size; x < half_patch_size; x++) for (int y = -half_patch_size; y < half_patch_size; y++) { double error = GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y) - GetPixelValue(img2, kp.pt.x + x + dx, kp.pt.y + y + dy);; // Jacobian if (inverse == false) { J = -1.0 * Eigen::Vector2d( 0.5 * (GetPixelValue(img2, kp.pt.x + dx + x + 1, kp.pt.y + dy + y) - GetPixelValue(img2, kp.pt.x + dx + x - 1, kp.pt.y + dy + y)), 0.5 * (GetPixelValue(img2, kp.pt.x + dx + x, kp.pt.y + dy + y + 1) - GetPixelValue(img2, kp.pt.x + dx + x, kp.pt.y + dy + y - 1)) ); } else if (iter == 0) { // in inverse mode, J keeps same for all iterations // NOTE this J does not change when dx, dy is updated, so we can store it and only compute error J = -1.0 * Eigen::Vector2d( 0.5 * (GetPixelValue(img1, kp.pt.x + x + 1, kp.pt.y + y) - GetPixelValue(img1, kp.pt.x + x - 1, kp.pt.y + y)), 0.5 * (GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y + 1) - GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y - 1)) ); } // compute H, b and set cost; b += -error * J; cost += error * error; if (inverse == false || iter == 0) { // also update H H += J * J.transpose(); } } // compute update Eigen::Vector2d update = H.ldlt().solve(b); if (std::isnan(update[0])) { // sometimes occurred when we have a black or white patch and H is irreversible cout << "update is nan" << endl; succ = false; break; } if (iter > 0 && cost > lastCost) { break; } // update dx, dy dx += update[0]; dy += update[1]; lastCost = cost; succ = true; if (update.norm() < 1e-2) { // converge break; } } success[i] = succ; // set kp2 kp2[i].pt = kp.pt + Point2f(dx, dy); } } void OpticalFlowMultiLevel( const Mat &img1, const Mat &img2, const vector<KeyPoint> &kp1, vector<KeyPoint> &kp2, vector<bool> &success, bool inverse) { // parameters int pyramids = 4; double pyramid_scale = 0.5; double scales[] = {1.0, 0.5, 0.25, 0.125}; // create pyramids chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); vector<Mat> pyr1, pyr2; // image pyramids for (int i = 0; i < pyramids; i++) { if (i == 0) { pyr1.push_back(img1); pyr2.push_back(img2); } else { Mat img1_pyr, img2_pyr; cv::resize(pyr1[i - 1], img1_pyr, cv::Size(pyr1[i - 1].cols * pyramid_scale, pyr1[i - 1].rows * pyramid_scale)); cv::resize(pyr2[i - 1], img2_pyr, cv::Size(pyr2[i - 1].cols * pyramid_scale, pyr2[i - 1].rows * pyramid_scale)); pyr1.push_back(img1_pyr); pyr2.push_back(img2_pyr); } } chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1); cout << "build pyramid time: " << time_used.count() << endl; // coarse-to-fine LK tracking in pyramids vector<KeyPoint> kp1_pyr, kp2_pyr; for (auto &kp:kp1) { auto kp_top = kp; kp_top.pt *= scales[pyramids - 1]; kp1_pyr.push_back(kp_top); kp2_pyr.push_back(kp_top); } for (int level = pyramids - 1; level >= 0; level--) { // from coarse to fine success.clear(); t1 = chrono::steady_clock::now(); OpticalFlowSingleLevel(pyr1[level], pyr2[level], kp1_pyr, kp2_pyr, success, inverse, true); t2 = chrono::steady_clock::now(); auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1); cout << "track pyr " << level << " cost time: " << time_used.count() << endl; if (level > 0) { for (auto &kp: kp1_pyr) kp.pt /= pyramid_scale; for (auto &kp: kp2_pyr) kp.pt /= pyramid_scale; } } for (auto &kp: kp2_pyr) kp2.push_back(kp); }
在build中执行语句:
./optical_flow
运行结果:
运行后展示使用opencv、单层、多层的追踪
同时终端输出:
build pyramid time: 0.0072683
track pyr 3 cost time: 0.0004321
track pyr 2 cost time: 0.0002794
track pyr 1 cost time: 0.0002624
track pyr 0 cost time: 0.0003014
optical flow by gauss-newton: 0.0087955
optical flow by opencv: 0.0054821
代码:
#include <opencv2/opencv.hpp> #include <sophus/se3.hpp> #include <boost/format.hpp> #include <pangolin/pangolin.h> //添加头文件 #include <opencv2/imgproc/types_c.h> using namespace std; typedef vector<Eigen::Vector2d, Eigen::aligned_allocator<Eigen::Vector2d>> VecVector2d; // Camera intrinsics double fx = 718.856, fy = 718.856, cx = 607.1928, cy = 185.2157; // baseline double baseline = 0.573; // paths string left_file = "/home/fighter/slam/slambook2/ch8/left.png"; string disparity_file = "/home/fighter/slam/slambook2/ch8/disparity.png"; boost::format fmt_others("/home/fighter/slam/slambook2/ch8/%06d.png"); // other files // useful typedefs typedef Eigen::Matrix<double, 6, 6> Matrix6d; typedef Eigen::Matrix<double, 2, 6> Matrix26d; typedef Eigen::Matrix<double, 6, 1> Vector6d; /// class for accumulator jacobians in parallel class JacobianAccumulator { public: JacobianAccumulator( const cv::Mat &img1_, const cv::Mat &img2_, const VecVector2d &px_ref_, const vector<double> depth_ref_, Sophus::SE3d &T21_) : img1(img1_), img2(img2_), px_ref(px_ref_), depth_ref(depth_ref_), T21(T21_) { projection = VecVector2d(px_ref.size(), Eigen::Vector2d(0, 0)); } /// accumulate jacobians in a range void accumulate_jacobian(const cv::Range &range); /// get hessian matrix Matrix6d hessian() const { return H; } /// get bias Vector6d bias() const { return b; } /// get total cost double cost_func() const { return cost; } /// get projected points VecVector2d projected_points() const { return projection; } /// reset h, b, cost to zero void reset() { H = Matrix6d::Zero(); b = Vector6d::Zero(); cost = 0; } private: const cv::Mat &img1; const cv::Mat &img2; const VecVector2d &px_ref; const vector<double> depth_ref; Sophus::SE3d &T21; VecVector2d projection; // projected points std::mutex hessian_mutex; Matrix6d H = Matrix6d::Zero(); Vector6d b = Vector6d::Zero(); double cost = 0; }; /** * pose estimation using direct method * @param img1 * @param img2 * @param px_ref * @param depth_ref * @param T21 */ void DirectPoseEstimationMultiLayer( const cv::Mat &img1, const cv::Mat &img2, const VecVector2d &px_ref, const vector<double> depth_ref, Sophus::SE3d &T21 ); /** * pose estimation using direct method * @param img1 * @param img2 * @param px_ref * @param depth_ref * @param T21 */ void DirectPoseEstimationSingleLayer( const cv::Mat &img1, const cv::Mat &img2, const VecVector2d &px_ref, const vector<double> depth_ref, Sophus::SE3d &T21 ); // bilinear interpolation inline float GetPixelValue(const cv::Mat &img, float x, float y) { // boundary check if (x < 0) x = 0; if (y < 0) y = 0; if (x >= img.cols) x = img.cols - 1; if (y >= img.rows) y = img.rows - 1; uchar *data = &img.data[int(y) * img.step + int(x)]; float xx = x - floor(x); float yy = y - floor(y); return float( (1 - xx) * (1 - yy) * data[0] + xx * (1 - yy) * data[1] + (1 - xx) * yy * data[img.step] + xx * yy * data[img.step + 1] ); } int main(int argc, char **argv) { cv::Mat left_img = cv::imread(left_file, 0); cv::Mat disparity_img = cv::imread(disparity_file, 0); // let's randomly pick pixels in the first image and generate some 3d points in the first image's frame cv::RNG rng; int nPoints = 2000; int boarder = 20; VecVector2d pixels_ref; vector<double> depth_ref; // generate pixels in ref and load depth data for (int i = 0; i < nPoints; i++) { int x = rng.uniform(boarder, left_img.cols - boarder); // don't pick pixels close to boarder int y = rng.uniform(boarder, left_img.rows - boarder); // don't pick pixels close to boarder int disparity = disparity_img.at<uchar>(y, x); double depth = fx * baseline / disparity; // you know this is disparity to depth depth_ref.push_back(depth); pixels_ref.push_back(Eigen::Vector2d(x, y)); } // estimates 01~05.png's pose using this information Sophus::SE3d T_cur_ref; for (int i = 1; i < 6; i++) { // 1~10 cv::Mat img = cv::imread((fmt_others % i).str(), 0); // try single layer by uncomment this line // DirectPoseEstimationSingleLayer(left_img, img, pixels_ref, depth_ref, T_cur_ref); DirectPoseEstimationMultiLayer(left_img, img, pixels_ref, depth_ref, T_cur_ref); } return 0; } void DirectPoseEstimationSingleLayer( const cv::Mat &img1, const cv::Mat &img2, const VecVector2d &px_ref, const vector<double> depth_ref, Sophus::SE3d &T21) { const int iterations = 10; double cost = 0, lastCost = 0; auto t1 = chrono::steady_clock::now(); JacobianAccumulator jaco_accu(img1, img2, px_ref, depth_ref, T21); for (int iter = 0; iter < iterations; iter++) { jaco_accu.reset(); cv::parallel_for_(cv::Range(0, px_ref.size()), std::bind(&JacobianAccumulator::accumulate_jacobian, &jaco_accu, std::placeholders::_1)); Matrix6d H = jaco_accu.hessian(); Vector6d b = jaco_accu.bias(); // solve update and put it into estimation Vector6d update = H.ldlt().solve(b);; T21 = Sophus::SE3d::exp(update) * T21; cost = jaco_accu.cost_func(); if (std::isnan(update[0])) { // sometimes occurred when we have a black or white patch and H is irreversible cout << "update is nan" << endl; break; } if (iter > 0 && cost > lastCost) { cout << "cost increased: " << cost << ", " << lastCost << endl; break; } if (update.norm() < 1e-3) { // converge break; } lastCost = cost; cout << "iteration: " << iter << ", cost: " << cost << endl; } cout << "T21 = \n" << T21.matrix() << endl; auto t2 = chrono::steady_clock::now(); auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1); cout << "direct method for single layer: " << time_used.count() << endl; // plot the projected pixels here cv::Mat img2_show; cv::cvtColor(img2, img2_show, CV_GRAY2BGR); VecVector2d projection = jaco_accu.projected_points(); for (size_t i = 0; i < px_ref.size(); ++i) { auto p_ref = px_ref[i]; auto p_cur = projection[i]; if (p_cur[0] > 0 && p_cur[1] > 0) { cv::circle(img2_show, cv::Point2f(p_cur[0], p_cur[1]), 2, cv::Scalar(0, 250, 0), 2); cv::line(img2_show, cv::Point2f(p_ref[0], p_ref[1]), cv::Point2f(p_cur[0], p_cur[1]), cv::Scalar(0, 250, 0)); } } cv::imshow("current", img2_show); cv::waitKey(); } void JacobianAccumulator::accumulate_jacobian(const cv::Range &range) { // parameters const int half_patch_size = 1; int cnt_good = 0; Matrix6d hessian = Matrix6d::Zero(); Vector6d bias = Vector6d::Zero(); double cost_tmp = 0; for (size_t i = range.start; i < range.end; i++) { // compute the projection in the second image Eigen::Vector3d point_ref = depth_ref[i] * Eigen::Vector3d((px_ref[i][0] - cx) / fx, (px_ref[i][1] - cy) / fy, 1); Eigen::Vector3d point_cur = T21 * point_ref; if (point_cur[2] < 0) // depth invalid continue; float u = fx * point_cur[0] / point_cur[2] + cx, v = fy * point_cur[1] / point_cur[2] + cy; if (u < half_patch_size || u > img2.cols - half_patch_size || v < half_patch_size || v > img2.rows - half_patch_size) continue; projection[i] = Eigen::Vector2d(u, v); double X = point_cur[0], Y = point_cur[1], Z = point_cur[2], Z2 = Z * Z, Z_inv = 1.0 / Z, Z2_inv = Z_inv * Z_inv; cnt_good++; // and compute error and jacobian for (int x = -half_patch_size; x <= half_patch_size; x++) for (int y = -half_patch_size; y <= half_patch_size; y++) { double error = GetPixelValue(img1, px_ref[i][0] + x, px_ref[i][1] + y) - GetPixelValue(img2, u + x, v + y); Matrix26d J_pixel_xi; Eigen::Vector2d J_img_pixel; J_pixel_xi(0, 0) = fx * Z_inv; J_pixel_xi(0, 1) = 0; J_pixel_xi(0, 2) = -fx * X * Z2_inv; J_pixel_xi(0, 3) = -fx * X * Y * Z2_inv; J_pixel_xi(0, 4) = fx + fx * X * X * Z2_inv; J_pixel_xi(0, 5) = -fx * Y * Z_inv; J_pixel_xi(1, 0) = 0; J_pixel_xi(1, 1) = fy * Z_inv; J_pixel_xi(1, 2) = -fy * Y * Z2_inv; J_pixel_xi(1, 3) = -fy - fy * Y * Y * Z2_inv; J_pixel_xi(1, 4) = fy * X * Y * Z2_inv; J_pixel_xi(1, 5) = fy * X * Z_inv; J_img_pixel = Eigen::Vector2d( 0.5 * (GetPixelValue(img2, u + 1 + x, v + y) - GetPixelValue(img2, u - 1 + x, v + y)), 0.5 * (GetPixelValue(img2, u + x, v + 1 + y) - GetPixelValue(img2, u + x, v - 1 + y)) ); // total jacobian Vector6d J = -1.0 * (J_img_pixel.transpose() * J_pixel_xi).transpose(); hessian += J * J.transpose(); bias += -error * J; cost_tmp += error * error; } } if (cnt_good) { // set hessian, bias and cost unique_lock<mutex> lck(hessian_mutex); H += hessian; b += bias; cost += cost_tmp / cnt_good; } } void DirectPoseEstimationMultiLayer( const cv::Mat &img1, const cv::Mat &img2, const VecVector2d &px_ref, const vector<double> depth_ref, Sophus::SE3d &T21) { // parameters int pyramids = 4; double pyramid_scale = 0.5; double scales[] = {1.0, 0.5, 0.25, 0.125}; // create pyramids vector<cv::Mat> pyr1, pyr2; // image pyramids for (int i = 0; i < pyramids; i++) { if (i == 0) { pyr1.push_back(img1); pyr2.push_back(img2); } else { cv::Mat img1_pyr, img2_pyr; cv::resize(pyr1[i - 1], img1_pyr, cv::Size(pyr1[i - 1].cols * pyramid_scale, pyr1[i - 1].rows * pyramid_scale)); cv::resize(pyr2[i - 1], img2_pyr, cv::Size(pyr2[i - 1].cols * pyramid_scale, pyr2[i - 1].rows * pyramid_scale)); pyr1.push_back(img1_pyr); pyr2.push_back(img2_pyr); } } double fxG = fx, fyG = fy, cxG = cx, cyG = cy; // backup the old values for (int level = pyramids - 1; level >= 0; level--) { VecVector2d px_ref_pyr; // set the keypoints in this pyramid level for (auto &px: px_ref) { px_ref_pyr.push_back(scales[level] * px); } // scale fx, fy, cx, cy in different pyramid levels fx = fxG * scales[level]; fy = fyG * scales[level]; cx = cxG * scales[level]; cy = cyG * scales[level]; DirectPoseEstimationSingleLayer(pyr1[level], pyr2[level], px_ref_pyr, depth_ref, T21); } }
在build中执行语句: ./direct_method
运行结果:
运行结果图可以看出追踪流,需要不停的对窗口关闭,可以看出来其变化。
终端输出相应信息:
iteration: 0, cost: 1.59797e+06 iteration: 1, cost: 651716 iteration: 2, cost: 243255 iteration: 3, cost: 176884 cost increased: 183909, 176884 T21 = 0.999991 0.00245009 0.0033858 0.00303273 -0.00245906 0.999993 0.00264927 0.000424829 -0.00337929 -0.00265757 0.999991 -0.730917 0 0 0 1 direct method for single layer: 0.0016574 iteration: 0, cost: 186361 T21 = 0.999989 0.00302157 0.00347121 0.000762356 -0.00302936 0.999993 0.00224074 0.00666315 -0.00346442 -0.00225123 0.999991 -0.728227 0 0 0 1 direct method for single layer: 0.002358 iteration: 0, cost: 247529 iteration: 1, cost: 229117 T21 = 0.999991 0.00251345 0.00346578 -0.00270253 -0.00252155 0.999994 0.00233534 0.00243076 -0.00345989 -0.00234406 0.999991 -0.734719 0 0 0 1 direct method for single layer: 0.00523089 iteration: 0, cost: 348441 T21 = 0.999991 0.00248082 0.00343389 -0.00373965 -0.00248836 0.999994 0.00219448 0.00304522 -0.00342843 -0.00220301 0.999992 -0.732343 0 0 0 1 direct method for single layer: 0.0012425 iteration: 0, cost: 1.315e+06 iteration: 1, cost: 906037 iteration: 2, cost: 603626 iteration: 3, cost: 399435 iteration: 4, cost: 280889 iteration: 5, cost: 237691 cost increased: 238395, 237691 T21 = 0.999971 0.000902974 0.00759567 0.00772499 -0.000938067 0.999989 0.00461783 0.00179863 -0.00759142 -0.00462482 0.99996 -1.46052 0 0 0 1 direct method for single layer: 0.0045787 iteration: 0, cost: 355480 iteration: 1, cost: 348267 cost increased: 348423, 348267 T21 = 0.999972 0.00120085 0.00742895 0.0085892 -0.00123022 0.999991 0.00395007 0.00531883 -0.00742414 -0.0039591 0.999965 -1.46883 0 0 0 1 direct method for single layer: 0.0009226 iteration: 0, cost: 443225 iteration: 1, cost: 435054 cost increased: 437537, 435054 T21 = 0.999971 0.000737127 0.00764046 -0.000242531 -0.000767091 0.999992 0.00391957 0.00279348 -0.00763751 -0.00392532 0.999963 -1.4818 0 0 0 1 direct method for single layer: 0.0009165 iteration: 0, cost: 501709 iteration: 1, cost: 463084 cost increased: 463953, 463084 T21 = 0.999971 0.000695392 0.00758989 -0.00249798 -0.000723685 0.999993 0.00372567 0.00395279 -0.00758725 -0.00373106 0.999964 -1.48132 0 0 0 1 direct method for single layer: 0.0008786 iteration: 0, cost: 1.37107e+06 iteration: 1, cost: 1.10683e+06 iteration: 2, cost: 921990 iteration: 3, cost: 794740 iteration: 4, cost: 601342 iteration: 5, cost: 559319 iteration: 6, cost: 394434 iteration: 7, cost: 363978 cost increased: 374118, 363978 T21 = 0.999945 0.00160897 0.0103684 0.0493737 -0.00166631 0.999983 0.00552457 0.0132374 -0.0103594 -0.00554155 0.999931 -2.18064 0 0 0 1 direct method for single layer: 0.0020563 iteration: 0, cost: 461649 iteration: 1, cost: 443603 iteration: 2, cost: 436513 iteration: 3, cost: 432080 iteration: 4, cost: 423494 cost increased: 431930, 423494 T21 = 0.999938 0.00146627 0.011054 0.0282033 -0.00152599 0.999984 0.0053958 0.00256267 -0.0110459 -0.00541233 0.999924 -2.21468 0 0 0 1 direct method for single layer: 0.0015141 iteration: 0, cost: 646880 iteration: 1, cost: 614318 iteration: 2, cost: 613113 cost increased: 620133, 613113 T21 = 0.999935 0.00152579 0.0112714 0.0183767 -0.00158773 0.999984 0.00548783 -0.00540064 -0.0112629 -0.00550537 0.999921 -2.23461 0 0 0 1 direct method for single layer: 0.0011636 iteration: 0, cost: 924370 iteration: 1, cost: 828022 iteration: 2, cost: 821445 iteration: 3, cost: 803411 cost increased: 811368, 803411 T21 = 0.999934 0.00125001 0.0114068 0.00255272 -0.00131019 0.999985 0.00527034 -0.000605904 -0.0114001 -0.00528494 0.999921 -2.24055 0 0 0 1 direct method for single layer: 0.0015292 iteration: 0, cost: 1.43709e+06 iteration: 1, cost: 1.31501e+06 iteration: 2, cost: 1.06723e+06 iteration: 3, cost: 938977 iteration: 4, cost: 788005 iteration: 5, cost: 680776 iteration: 6, cost: 605861 iteration: 7, cost: 548408 iteration: 8, cost: 516721 iteration: 9, cost: 513621 T21 = 0.999872 -0.000312873 0.0159856 0.0259369 0.000197362 0.999974 0.00722705 -0.00480823 -0.0159874 -0.00722297 0.999846 -2.96617 0 0 0 1 direct method for single layer: 0.0048151 iteration: 0, cost: 640692 iteration: 1, cost: 616653 iteration: 2, cost: 610486 cost increased: 615297, 610486 T21 = 0.999864 -0.000319108 0.0164719 0.00993795 0.000208632 0.999977 0.00670821 -0.00627072 -0.0164737 -0.00670386 0.999842 -3.005 0 0 0 1 direct method for single layer: 0.0009756 iteration: 0, cost: 848724 iteration: 1, cost: 823518 iteration: 2, cost: 780844 cost increased: 802765, 780844 T21 = 0.999865 -0.000227727 0.0164536 0.0022434 0.000124997 0.99998 0.0062444 -0.00399514 -0.0164547 -0.00624149 0.999845 -3.01734 0 0 0 1 direct method for single layer: 0.0010828 iteration: 0, cost: 1.26838e+06 iteration: 1, cost: 1.16447e+06 cost increased: 1.19957e+06, 1.16447e+06 T21 = 0.999865 0.00017071 0.0164584 -0.00906366 -0.000267333 0.999983 0.00586871 0.000576184 -0.0164571 -0.00587231 0.999847 -3.02444 0 0 0 1 direct method for single layer: 0.0008361 iteration: 0, cost: 1.64476e+06 iteration: 1, cost: 1.49383e+06 iteration: 2, cost: 1.23318e+06 iteration: 3, cost: 950472 iteration: 4, cost: 794112 iteration: 5, cost: 686345 iteration: 6, cost: 671817 iteration: 7, cost: 659908 iteration: 8, cost: 652671 iteration: 9, cost: 605440 T21 = 0.999803 0.00057056 0.0198394 0.0427397 -0.000712283 0.999974 0.00713717 0.0136135 -0.0198348 -0.00714989 0.999778 -3.76444 0 0 0 1 direct method for single layer: 0.0088727 iteration: 0, cost: 983836 iteration: 1, cost: 948750 iteration: 2, cost: 945444 iteration: 3, cost: 895561 cost increased: 898341, 895561 T21 = 0.99978 0.000643056 0.0209471 0.000477452 -0.000787155 0.999976 0.00687165 0.00707341 -0.0209422 -0.00688663 0.999757 -3.83472 0 0 0 1 direct method for single layer: 0.0012023 iteration: 0, cost: 1.27161e+06 iteration: 1, cost: 1.22543e+06 iteration: 2, cost: 1.04807e+06 cost increased: 1.2001e+06, 1.04807e+06 T21 = 0.999777 0.00108579 0.0210816 -0.00872002 -0.00121752 0.99998 0.00623637 0.0124058 -0.0210744 -0.00626065 0.999758 -3.85459 0 0 0 1 direct method for single layer: 0.0010238 iteration: 0, cost: 1.67716e+06 iteration: 1, cost: 1.64927e+06 iteration: 2, cost: 1.63771e+06 cost increased: 1.64371e+06, 1.63771e+06 T21 = 0.999786 0.00136909 0.0206569 -0.00336234 -0.00149442 0.999981 0.0060529 0.00874311 -0.0206482 -0.00608247 0.999768 -3.86001 0 0 0 1 direct method for single layer: 0.001018
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。