当前位置:   article > 正文

【LangChain】Prompts之自定义提示模板_langchain提供了一组默认的提示模板

langchain提供了一组默认的提示模板

LangChain学习文档


概要

假设我们希望LLM生成给定函数名称的英语解释。为了实现此任务,我们将创建一个自定义提示模板,该模板将函数名称作为输入,并格式化提示模板以提供函数的源代码。

为什么需要自定义提示模板?

LangChain提供了一组默认的提示模板,可用于生成各种任务的提示。但是,在某些情况下,默认的提示模板可能无法满足我们的需求。例如,我们可能想要创建一个提示模板,其中包含适合我们的语言模型的特定动态指令。在这种情况下,您可以创建自定义提示模板。

此处查看当前的默认提示模板集。

创建自定义提示模板(Creating a Custom Prompt Template)

本质上有两种不同的提示模板可用 - 字符串提示模板聊天提示模板

一、字符串提示模板提供字符串格式的简单提示。

二、聊天提示模板生成更结构化的提示以与聊天 API 一起使用。

在本指南中,我们将使用字符串提示模板创建自定义提示。

要创建自定义字符串提示模板,有两个要求:

① 它有一个 input_variables 属性,该属性公开提示模板所需的输入变量。
② 它公开了一个格式方法,该方法接受与预期的 input_variables 相对应的关键字参数并返回格式化的提示。

我们将创建一个自定义提示模板,它将函数名称作为输入,并格式化提示以提供函数的源代码。为了实现这一点,我们首先创建一个函数,该函数将返回给定名称的函数的源代码。

import inspect


def get_source_code(function_name):
    # 获取函数的源码
    return inspect.getsource(function_name)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

接下来,我们将创建一个自定义提示模板,它将函数名称作为输入,并格式化提示模板以提供函数的源代码。

from langchain.prompts import StringPromptTemplate
from pydantic import BaseModel, validator

#给定函数名称和源代码,生成该函数的英语解释。
#函数名称:{函数名称}
#源代码:
#{源代码}
#解释:
PROMPT = """\
Given the function name and source code, generate an English language explanation of the function.
Function Name: {function_name}
Source Code:
{source_code}
Explanation:
"""


class FunctionExplainerPromptTemplate(StringPromptTemplate, BaseModel):
    """A custom prompt template that takes in the function name as input, and formats the prompt template to provide the source code of the function."""

    @validator("input_variables")
    def validate_input_variables(cls, v):
    	# 验证输入变量是否正确。
        """Validate that the input variables are correct."""
        if len(v) != 1 or "function_name" not in v:
        	# 提示错误,函数名称必须唯一
            raise ValueError("function_name must be the only input_variable.")
        return v

    def format(self, **kwargs) -> str:
        # 获取函数的源码
        source_code = get_source_code(kwargs["function_name"])

        # 生成要发送到语言模型的提示
        # __name__是当前模块名
        prompt = PROMPT.format(
            function_name=kwargs["function_name"].__name__, source_code=source_code
        )
        return prompt

    def _prompt_type(self):
        return "function-explainer"
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42

参考api:

使用自定义提示模板(Use the custom prompt template)

现在我们已经创建了自定义提示模板,我们可以使用它来为我们的任务生成提示。

fn_explainer = FunctionExplainerPromptTemplate(input_variables=["function_name"])

# 生成函数“get_source_code”的提示
prompt = fn_explainer.format(function_name=get_source_code)
print(prompt)
  • 1
  • 2
  • 3
  • 4
  • 5

结果:

    给定函数名称和源代码,生成该函数的英语解释。
    函数名称: get_source_code
    源码:
    def get_source_code(function_name):
        # Get the source code of the function
        return inspect.getsource(function_name)
    
    Explanation:
    
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

总结

本文讲解的就是如何创建自定义提示:

  1. 先定义一个包含变量的字符串,变量用{},如:
"""\
Given the function name and source code, generate an English language explanation of the function.
Function Name: {function_name}
Source Code:
{source_code}
Explanation:
"""
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  1. 使用PROMPT.format(xxx)函数,进行格式化,如:
prompt = PROMPT.format(
            function_name=kwargs["function_name"].__name__, source_code=source_code
        )
  • 1
  • 2
  • 3

参考地址:

https://python.langchain.com/docs/modules/model_io/prompts/prompt_templates/custom_prompt_template

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/336674
推荐阅读
相关标签
  

闽ICP备14008679号