赞
踩
- from sklearn import datasets
- digits = datasets.load_digits()
- print(digits.keys())
-
- dict_keys(['data', 'target', 'target_names', 'images', 'DESCR'])
- import matplotlib.pyplot as plt
- plt.imshow(digits.images[0])
- <matplotlib.image.AxesImage at 0x1676ca13ba8>
- plt.show()
- # 获取第一张图片
- print(digits.images[0])
- [[ 0. 0. 5. 13. 9. 1. 0. 0.]
- [ 0. 0. 13. 15. 10. 15. 5. 0.]
- [ 0. 3. 15. 2. 0. 11. 8. 0.]
- [ 0. 4. 12. 0. 0. 8. 8. 0.]
- [ 0. 5. 8. 0. 0. 9. 8. 0.]
- [ 0. 4. 11. 0. 1. 12. 7. 0.]
- [ 0. 2. 14. 5. 10. 12. 0. 0.]
- [ 0. 0. 6. 13. 10. 0. 0. 0.]]
或者
- from skimage import io
- im=plt.imshow(digits.images[0])
- print(type(im))
- <class 'matplotlib.image.AxesImage'>
- io.show()
- print(digits.data[0])
- [ 0. 0. 5. 13. 9. 1. 0. 0. 0. 0. 13. 15. 10. 15. 5.
- 0. 0. 3. 15. 2. 0. 11. 8. 0. 0. 4. 12. 0. 0. 8.
- 8. 0. 0. 5. 8. 0. 0. 9. 8. 0. 0. 4. 11. 0. 1.
- 12. 7. 0. 0. 2. 14. 5. 10. 12. 0. 0. 0. 0. 6. 13.
- 10. 0. 0. 0.]
- print(digits.target[0])
-
- 0
- print(digits.target_names)
- [0 1 2 3 4 5 6 7 8 9]
- print(digits.DESCR)
- .. _digits_dataset:
-
- Optical recognition of handwritten digits dataset
- --------------------------------------------------
-
- **Data Set Characteristics:**
-
- :Number of Instances: 5620
- :Number of Attributes: 64
- :Attribute Information: 8x8 image of integer pixels in the range 0..16.
- :Missing Attribute Values: None
- :Creator: E. Alpaydin (alpaydin '@' boun.edu.tr)
- :Date: July; 1998
-
- This is a copy of the test set of the UCI ML hand-written digits datasets
- http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
-
- The data set contains images of hand-written digits: 10 classes where
- each class refers to a digit.
-
- Preprocessing programs made available by NIST were used to extract
- normalized bitmaps of handwritten digits from a preprinted form. From a
- total of 43 people, 30 contributed to the training set and different 13
- to the test set. 32x32 bitmaps are divided into nonoverlapping blocks of
- 4x4 and the number of on pixels are counted in each block. This generates
- an input matrix of 8x8 where each element is an integer in the range
- 0..16. This reduces dimensionality and gives invariance to small
- distortions.
-
- For info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G.
- T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C.
- L. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469,
- 1994.
-
- .. topic:: References
-
- - C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their
- Applications to Handwritten Digit Recognition, MSc Thesis, Institute of
- Graduate Studies in Science and Engineering, Bogazici University.
- - E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika.
- - Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin.
- Linear dimensionalityreduction using relevance weighted LDA. School of
- Electrical and Electronic Engineering Nanyang Technological University.
- 2005.
- - Claudio Gentile. A New Approximate Maximal Margin Classification
- Algorithm. NIPS. 2000.
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。