赞
踩
比赛链接:讯飞开放平台
来源:DataWhale AI夏令营3(NLP)
①Roberta在预训练的阶段中没有对下一句话进行预测(NSP)
②采用了动态掩码 ③使用字符级和词级别表征的混合文本编码。
论文:https://arxiv.org/pdf/1907.11692.pdf
DataWhale Topline的改进:
特征1:平均池化MeanPooling(768维) -> 全连接层fc(128维)
特征2:末隐藏层Last_hidden (768维) -> 全连接层fc(128维)
运行方式:阿里云机器学习平台PAI-交互式建模DSW
镜像选择:pytorch:1.12-gpu-py39-cu113-ubuntu20.04
上传代码,解压指令:
unzip [filename]
运行py脚本指令(遇到网络错误重新运行即可):
python [python_filename]
导入需要的模块:
- from transformers import AutoTokenizer #文本分词
- import pandas as pd
- import numpy as np
- from tqdm import tqdm #显示进度条
- import torch
- from torch.nn.utils.rnn import pad_sequence
- #填充序列,保证向量中各序列维度的大小一样
-
- MAX_LENGTH = 128 #定义最大序列长度为128
训练集制作:
- def get_train(model_name, model_dict):
- model_index = model_dict[model_name] # 获取模型索引
- train = pd.read_csv('./dataset/train.csv') #读取训练数据为DataFrame
- train['content'] = train['title'] + train['author'] + train['abstract']
- #将标题、作者和摘要拼接为训练内容
- tokenizer = AutoTokenizer.from_pretrained(model_name, max_length=MAX_LENGTH, cache_dir=f'./premodels/{model_name}_saved') # 实例化分词器对象
-
- # 通过分词器对训练数据进行分词,并获取输入ID、注意力掩码和标记类型ID(这个可有可无)
- input_ids_list, attention_mask_list, token_type_ids_list = [], [], []
- y_train = [] # 存储训练数据的标签
-
- for i in tqdm(range(len(train['content']))): # 遍历训练数据
- sample = train['content'][i] # 获取样本内容
- tokenized = tokenizer(sample, truncation='longest_first')
- #分词处理,【最长优先方式】截断
- input_ids, attention_mask = tokenized['input_ids'], tokenized['attention_mask'] # 获取输入ID和注意力掩码
- input_ids, attention_mask = torch.tensor(input_ids), torch.tensor(attention_mask) # 转换为PyTorch张量
- try:
- token_type_ids = tokenized['token_type_ids'] # 获取标记类型ID
- token_type_ids = torch.tensor(token_type_ids) # 转换为PyTorch张量
- except:
- token_type_ids = input_ids #异常处理
- input_ids_list.append(input_ids) # 将输入ID添加到列表中
- attention_mask_list.append(attention_mask) # 将注意力掩码添加到列表中
- token_type_ids_list.append(token_type_ids) # 将标记类型ID添加到列表中
- y_train.append(train['label'][i]) # 将训练数据的标签添加到列表中
- # 保存 对下述对象进行填充,保证向量中各序列维度的大小一样,生成张量
- # 输入 ID input_ids_tensor、
- # 注意力掩码 attention_mask_tensor
- # 标记类型ID token_type_ids_tensor
- input_ids_tensor = pad_sequence(input_ids_list, batch_first=True, padding_value=0)
- attention_mask_tensor = pad_sequence(attention_mask_list, batch_first=True, padding_value=0)
- token_type_ids_tensor = pad_sequence(token_type_ids_list, batch_first=True, padding_value=0)
- x_train = torch.stack([input_ids_tensor, attention_mask_tensor, token_type_ids_tensor], dim=1) # 将输入张量堆叠为一个张量
- x_train = x_train.numpy() # 转换为NumPy数组(ndarray)
- np.save(f'./models_input_files/x_train{model_index}.npy', x_train) #保存训练数据
- y_train = np.array(y_train) # 转换为NumPy数组(ndarray)
- np.save(f'./models_input_files/y_train{model_index}.npy', y_train) #保存标签数据
测试集制作:
- def get_test(model_name, model_dict):
- model_index = model_dict[model_name] # 获取模型索引
- test = pd.read_csv('./dataset/testB.csv') # 从CSV文件中读取测试数据为DataFrame
- test['content'] = test['title'] + ' ' + test['author'] + ' ' + test['abstract']
- # 将标题、作者和摘要拼接为测试内容
- tokenizer = AutoTokenizer.from_pretrained(model_name, max_length=MAX_LENGTH,cache_dir=f'./premodels/{model_name}_saved') # 实例化分词器对象
- # 通过分词器对测试数据进行分词,创建输入ID、注意力掩码和标记类型ID列表进行记录(可有可无)
- input_ids_list, attention_mask_list, token_type_ids_list = [], [], []
-
- for i in tqdm(range(len(test['content']))): # 遍历测试数据
- sample = test['content'][i] # 获取样本内容
- tokenized = tokenizer(sample, truncation='longest_first')
- # 分词处理,使用最长优先方式截断
- input_ids, attention_mask = tokenized['input_ids'], tokenized['attention_mask'] # 获取输入ID和注意力掩码
- input_ids, attention_mask = torch.tensor(input_ids), torch.tensor(attention_mask) # 转换为PyTorch张量
- try:
- token_type_ids = tokenized['token_type_ids'] # 获取标记类型ID
- token_type_ids = torch.tensor(token_type_ids) # 转换为PyTorch张量
- except:
- token_type_ids = input_ids #异常处理
- input_ids_list.append(input_ids) # 将输入ID添加到列表中
- attention_mask_list.append(attention_mask) # 将注意力掩码添加到列表中
- token_type_ids_list.append(token_type_ids) # 将标记类型ID添加到列表中
-
- # 保存,对输入ID、注意力掩码、标记类型ID进行填充,保证向量中各序列维度的大小一样,生成张量
- input_ids_tensor = pad_sequence(input_ids_list, batch_first=True, padding_value=0)
- attention_mask_tensor = pad_sequence(attention_mask_list, batch_first=True, padding_value=0)
- token_type_ids_tensor = pad_sequence(token_type_ids_list, batch_first=True, padding_value=0)
- x_test = torch.stack([input_ids_tensor, attention_mask_tensor, token_type_ids_tensor], dim=1) # 将输入张量堆叠为一个张量
- x_test = x_test.numpy() # 转换为NumPy数组
- np.save(f'./models_input_files/x_test{model_index}.npy', x_test) # 保存测试数据
划分训练集和验证集:
- def split_train(model_name, model_dict):
- # 训练集:验证集 = 9 : 1
- split_rate = 0.90
-
- # 处理样本内容
- model_index = model_dict[model_name] # 获取模型索引
- train = np.load(f'./models_input_files/x_train{model_index}.npy') # 加载训练数据
- state = np.random.get_state() # 获取随机数状态,保证样本间的随机是可重复的
- # 或者也可以设置经典随机种子random_seed=42
- np.random.shuffle(train) # 随机打乱训练数据,数据洗牌
- val = train[int(train.shape[0] * split_rate):] # 划分验证集 validation
- train = train[:int(train.shape[0] * split_rate)] # 划分训练集 train set
- np.save(f'./models_input_files/x_train{model_index}.npy', train) # 保存训练集
- np.save(f'./models_input_files/x_val{model_index}.npy', val) # 保存验证集
-
- train = np.load(f'./models_input_files/y_train{model_index}.npy') # 加载标签数据
-
- # 处理样本标签
- np.random.set_state(state) # 恢复随机数状态,让样本标签的随机可重复
- np.random.shuffle(train) # 随机打乱标签数据
- val = train[int(train.shape[0] * split_rate):] # 划分验证集 validation
- train = train[:int(train.shape[0] * split_rate)] # 划分训练集 train set
- np.save(f'./models_input_files/y_train{model_index}.npy', train) # 保存训练集标签
- np.save(f'./models_input_files/y_val{model_index}.npy', val) # 保存验证集标签
-
- print('split done.')
数据处理主函数:
- if __name__ == '__main__':
- model_dict = {'xlm-roberta-base':1,
- 'roberta-base':2,
- 'bert-base-uncased':3,
- 'microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext':4,
- 'dmis-lab/biobert-base-cased-v1.2':5,
- 'marieke93/MiniLM-evidence-types':6,
- 'microsoft/MiniLM-L12-H384-uncased':7,
- 'cambridgeltl/SapBERT-from-PubMedBERT-fulltext':8,
- 'microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract':9,
- 'microsoft/BiomedNLP-PubMedBERT-large-uncased-abstract':10}
- model_name = 'roberta-base'
- get_train(model_name, model_dict) #读取训练集
- get_test(model_name, model_dict) #读取测试集
- split_train(model_name, model_dict) #划分训练集和测试集
导入需要的模块:
- import numpy as np
- import torch
- import torch.nn as nn
- from sklearn import metrics
- import os
- import time
- from transformers import AutoModel, AutoConfig
- # 导入AutoModel和AutoConfig类,用于加载预训练模型
- from tqdm import tqdm #显示进度条
超参数类(可修改的所有超参数):
- class opt:
- seed = 42 # 随机种子
- batch_size = 16 # 批处理大小
- set_epoch = 5 # 训练轮数
- early_stop = 5 # 提前停止epoch数
- learning_rate = 1e-5 # 学习率
- weight_decay = 2e-6 # 权重衰减,L2正则化
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 选择设备,GPU或CPU
- gpu_num = 1 # GPU个数
- use_BCE = False # 是否使用BCE损失函数
- models = ['xlm-roberta-base', 'roberta-base', 'bert-base-uncased',
- 'microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext', 'dmis-lab/biobert-base-cased-v1.2', 'marieke93/MiniLM-evidence-types',
- 'microsoft/MiniLM-L12-H384-uncased','cambridgeltl/SapBERT-from-PubMedBERT-fulltext', 'microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract',
- 'microsoft/BiomedNLP-PubMedBERT-large-uncased-abstract'] # 模型名称列表
- model_index = 2 # 根据上面选择使用的模型,这里填对应的模型索引
- model_name = models[model_index-1] # 使用的模型名称
- continue_train = False # 是否继续训练
- show_val = False # 是否显示验证过程
定义模型类:
- # 定义模型
- class MODEL(nn.Module):
- def __init__(self, model_index):
- super(MODEL, self).__init__()
- # 若是第一次下载权重,则下载至同级目录的./premodels/内,以防占主目录的存储空间
- self.model = AutoModel.from_pretrained(opt.models[model_index-1], cache_dir='./premodels/'+opt.models[model_index-1]+'_saved', from_tf=False) # 加载预训练语言模型
- # 加载模型配置,可以直接获得模型最后一层的维度,而不需要手动修改
- config = AutoConfig.from_pretrained(opt.models[model_index-1], cache_dir='./premodels/'+opt.models[model_index-1]+'_saved') # 获取配置
- last_dim = config.hidden_size # 最后一层的维度
- if opt.use_BCE:out_size = 1 # 损失函数如果使用BCE,则输出大小为1
- else :out_size = 2 # 否则则使用CE,输出大小为2
- feature_size = 128 # 设置特征的维度大小
- self.fc1 = nn.Linear(last_dim, feature_size) # 全连接层1
- self.fc2 = nn.Linear(last_dim, feature_size) # 全连接层2
- self.classifier = nn.Linear(feature_size, out_size) # 分类器
- self.dropout = nn.Dropout(0.3) # Dropout层
-
-
- def forward(self, x): #BP
- input_ids, attention_mask, token_type_ids = x[:,0],x[:,1],x[:,2] # 获取输入
- x = self.model(input_ids, attention_mask) # 通过模型
-
- all_token = x[0] # 全部序列分词的表征向量
- pooled_output = x[1] # [CLS]的表征向量+一个全连接层+Tanh激活函数
-
- feature1 = all_token.mean(dim=1) # 对全部序列分词的表征向量取均值
- feature1 = self.fc1(feature1) # 再输入进全连接层,得到feature1
- feature2 = pooled_output # [CLS]的表征向量+一个全连接层+Tanh激活函数
- feature2 = self.fc2(feature2) # 再输入进全连接层,得到feature2
- feature = 0.5*feature1 + 0.5*feature2 # 加权融合特征
- feature = self.dropout(feature) # Dropout
-
- x = self.classifier(feature) # 分类
- return x
数据加载:
- def load_data():
- #数据集路径
- train_data_path = f'models_input_files/x_train{model_index}.npy'
- train_label_path = f'models_input_files/y_train{model_index}.npy'
- val_data_path = f'models_input_files/x_val{model_index}.npy'# 验证集
- val_label_path = f'models_input_files/y_val{model_index}.npy'# 验证集标签
- test_data_path = f'models_input_files/x_test{model_index}.npy'# 测试集输入
-
- #数据集读取
- #data=torch.tensor([path],allow_pickle=True).tolist())
- train_data = torch.tensor(np.load(train_data_path , allow_pickle=True).tolist())
- train_label = torch.tensor(np.load(train_label_path , allow_pickle=True).tolist()).long()
- val_data = torch.tensor(np.load(val_data_path , allow_pickle=True).tolist())
- val_label = torch.tensor(np.load(val_label_path , allow_pickle=True).tolist()).long()
- test_data = torch.tensor(np.load(test_data_path , allow_pickle=True).tolist())
-
- #构造训练集、验证集、测试集
- train_dataset = torch.utils.data.TensorDataset(train_data , train_label)
- val_dataset = torch.utils.data.TensorDataset(val_data , val_label)
- test_dataset = torch.utils.data.TensorDataset(test_data)
-
- return train_dataset, val_dataset, test_dataset # 返回数据集
模型预训练:
- def model_pretrain(model_index, train_loader, val_loader):
- # 超参数设置
- set_epoch = opt.set_epoch # 训练轮数
- early_stop = opt.early_stop # 提前停止epoch数
- learning_rate = opt.learning_rate # 学习率
- weight_decay = opt.weight_decay # 权重衰减
- device = opt.device # 设备
- gpu_num = opt.gpu_num # GPU个数
- continue_train = opt.continue_train # 是否继续训练
- model_save_dir = 'checkpoints' # 模型保存路径
-
- # 是否要继续训练,若是,则加载模型进行训练;若否,则跳过训练,直接对测试集进行推理
- if not continue_train:
- # 判断最佳模型是否已经存在,若存在则直接读取,若不存在则进行训练
- if os.path.exists(f'checkpoints/best_model{model_index}.pth'):
- best_model = MODEL(model_index)
- best_model.load_state_dict(torch.load(f'checkpoints/best_model{model_index}.pth')) # 加载模型
- return best_model
- else:
- pass
-
-
- # 模型初始化
- model = MODEL(model_index).to(device)
- if continue_train:
- model.load_state_dict(torch.load(f'checkpoints/best_model{model_index}.pth')) # 继续训练加载模型
-
- # 优化器初始化
- if device != 'cpu' and gpu_num > 1: # 多张显卡
- optimizer = torch.optim.AdamW(model.module.parameters(), lr=learning_rate, weight_decay=weight_decay)
- optimizer = torch.nn.DataParallel(optimizer, device_ids=list(range(gpu_num))) # 多GPU
- else: # 单张显卡
- optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay) # 单GPU
-
- # 损失函数初始化
- if opt.use_BCE:
- loss_func = nn.BCEWithLogitsLoss() # BCE损失
- else:
- loss_func = nn.CrossEntropyLoss() # 交叉熵损失(CE)
-
- # 模型训练
- best_epoch = 0 # 最佳epoch
- best_train_loss = 100000 # 最佳训练损失
- train_acc_list = [] # 训练准确率列表
- train_loss_list = [] # 训练损失列表
- val_acc_list = [] # 验证准确率列表
- val_loss_list = [] # 验证损失列表
- start_time = time.time() # 训练开始时间
-
- for epoch in range(set_epoch): # 轮数
- model.train() # 模型切换到训练模式
- train_loss = 0 # 训练损失
- train_acc = 0 # 训练准确率
- for x, y in tqdm(train_loader): # 遍历训练集
- # 训练前先将数据放到GPU上
- x = x.to(device)
- y = y.to(device)
- outputs = model(x) # 前向传播
-
- if opt.use_BCE: # BCE损失
- loss = loss_func(outputs, y.float().unsqueeze(1))
- else: # 交叉熵损失
- loss = loss_func(outputs, y)
- train_loss += loss.item() # 累加训练损失
- optimizer.zero_grad() # 清空梯度
- loss.backward() # 反向传播
-
- if device != 'cpu' and gpu_num > 1: # 多GPU更新
- optimizer.module.step()
- else:
- optimizer.step() # 单GPU更新
-
- if not opt.use_BCE: # 非BCE损失
- _, predicted = torch.max(outputs.data, 1) # 预测结果
- else:
- predicted = (outputs > 0.5).int() # 预测结果
- predicted = predicted.squeeze(1)
- train_acc += (predicted == y).sum().item() # 计算训练准确率
-
- average_mode = 'binary'
- # 计算F1、Precision、Recall
- train_f1 = metrics.f1_score(y.cpu(), predicted.cpu(), average=average_mode)
- train_pre = metrics.precision_score(y.cpu(), predicted.cpu(), average=average_mode)
- train_recall = metrics.recall_score(y.cpu(), predicted.cpu(), average=average_mode)
-
-
- train_loss /= len(train_loader) # 平均所有步数的训练损失作为一个epoch的训练损失
- train_acc /= len(train_loader.dataset) # 平均所有步数训练准确率作为一个epoch的准确率
- train_acc_list.append(train_acc) # 添加训练准确率
- train_loss_list.append(train_loss) # 添加训练损失
-
- print('-'*50)
- print('Epoch [{}/{}]\n Train Loss: {:.4f}, Train Acc: {:.4f}'.format(epoch + 1, set_epoch, train_loss, train_acc))
- print('Train-f1: {:.4f}, Train-precision: {:.4f} Train-recall: {:.4f}'.format(train_f1, train_pre, train_recall))
-
- if opt.show_val: # 显示验证过程
- # 验证
- model.eval() # 模型切换到评估模式
- val_loss = 0 # 验证损失
- val_acc = 0 # 验证准确率
-
- for x, y in tqdm(val_loader): # 遍历验证集
- # 训练前先将数据放到GPU上
- x = x.to(device)
- y = y.to(device)
- outputs = model(x) # 前向传播
- if opt.use_BCE: # BCE损失
- loss = loss_func(outputs, y.float().unsqueeze(1))
- else: # 交叉熵损失
- loss = loss_func(outputs, y)
-
- val_loss += loss.item() # 累加验证损失
- if not opt.use_BCE: # 非BCE损失
- _, predicted = torch.max(outputs.data, 1)
- else:
- predicted = (outputs > 0.5).int() # 预测结果
- predicted = predicted.squeeze(1)
- val_acc += (predicted == y).sum().item() # 计算验证准确率
-
- #计算F1、Precision、Recall
- val_f1 = metrics.f1_score(y.cpu(), predicted.cpu(), average=average_mode)
- val_pre = metrics.precision_score(y.cpu(), predicted.cpu(), average=average_mode)
- val_recall = metrics.recall_score(y.cpu(), predicted.cpu(), average=average_mode)
-
- val_loss /= len(val_loader) # 平均验证损失
- val_acc /= len(val_loader.dataset) # 平均验证准确率
- val_acc_list.append(val_acc) # 添加验证准确率
- val_loss_list.append(val_loss) # 添加验证损失
- print('\nVal Loss: {:.4f}, Val Acc: {:.4f}'.format(val_loss, val_acc))
- print('Val-f1: {:.4f}, Val-precision: {:.4f} Val-recall: {:.4f}'.format(val_f1, val_pre, val_recall))
-
- if train_loss < best_train_loss: # 更新最佳训练损失
- best_train_loss = train_loss
- best_epoch = epoch + 1
- if device == 'cuda' and gpu_num > 1: # 多GPU保存模型
- torch.save(model.module.state_dict(), f'{model_save_dir}/best_model{model_index}.pth')
- else:
- torch.save(model.state_dict(), f'{model_save_dir}/best_model{model_index}.pth') # 单GPU保存模型
-
- # 提前停止判断
- if epoch+1 - best_epoch == early_stop:
- print(f'{early_stop} epochs later, the loss of the validation set no longer continues to decrease, so the training is stopped early.')
- end_time = time.time()
- print(f'Total time is {end_time - start_time}s.')
- break
-
- best_model = MODEL(model_index) # 初始化最佳模型
- best_model.load_state_dict(torch.load(f'checkpoints/best_model{model_index}.pth')) # 加载模型参数
- return best_model # 返回最佳模型
模型推理:
- def model_predict(model, model_index, test_loader):
- device = 'cuda'
- model.to(device) # 模型到GPU
- model.eval() # 切换到评估模式
-
- test_outputs = None
- with torch.no_grad(): # 禁用梯度计算
- for i, data in enumerate(tqdm(test_loader)):
- data = data[0].to(device) # 测试数据到GPU
- outputs = model(data) # 前向传播
- if i == 0:
- test_outputs = outputs # 第一个batch直接赋值
- else:
- test_outputs = torch.cat([test_outputs, outputs], dim=0)
- # 其余batch拼接
-
- del data, outputs # 释放不再需要的Tensor
-
- # 保存预测结果
- if not opt.use_BCE:
- test_outputs = torch.softmax(test_outputs, dim=1) # 转换为概率
- torch.save(test_outputs, f'./models_prediction/{model_index}_prob.pth')
- # 保存概率
模型训练主函数:
- def run(model_index):
- # 固定随机种子
- seed = opt.seed
- torch.seed = seed
- np.random.seed(seed)
- torch.manual_seed(seed)
- torch.cuda.manual_seed(seed)
- torch.cuda.manual_seed_all(seed)
- torch.backends.cudnn.deterministic = True
-
- train_dataset, val_dataset, test_dataset = load_data() # 加载数据集
- # 打印数据集信息
- print('-数据集信息:')
- print(f'-训练集样本数:{len(train_dataset)},测试集样本数:{len(test_dataset)}')
- train_labels = len(set(train_dataset.tensors[1].numpy()))
-
- # 查看训练样本类别均衡状况
- print(f'-训练集的标签种类个数为:{train_labels}')
- numbers = [0] * train_labels
- for i in train_dataset.tensors[1].numpy():
- numbers[i] += 1
- print(f'-训练集各种类样本的个数:')
- for i in range(train_labels):
- print(f'-{i}的样本个数为:{numbers[i]}')
-
- batch_size = opt.batch_size # 批处理大小
- # 构建DataLoader
- train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
- val_loader = torch.utils.data.DataLoader(dataset=val_dataset, batch_size=batch_size, shuffle=True)
- test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
-
- best_model = model_pretrain(model_index, train_loader, val_loader)
-
- # 使用验证集评估模型
- model_predict(best_model, model_index, test_loader) # 模型推理
-
- if __name__ == '__main__':
- model_index = opt.model_index # 获取模型索引
- run(model_index) # 运行程序
- import torch
- import pandas as pd
- from models_training import MODEL # 从本地文件models_training.py中导入MODEL类
- from tqdm import tqdm
- from sklearn.metrics import classification_report
- import numpy as np
-
- # 推理
- def inference(model_indexs, use_BCE):
- device = 'cuda' # 设备选择为cuda
- for model_index in model_indexs:
- # 加载模型
- model = MODEL(model_index).to(device) # 创建MODEL类的实例,并将模型移至设备(device)
- model.load_state_dict(torch.load(f'checkpoints/best_model{model_index}.pth')) # 加载模型的权重参数
- model.eval() # 切换到评估模式
- # 加载val数据
- val_data_path = f'models_input_files/x_val{model_index}.npy' # val数据的路径
- val_data = torch.tensor(np.load(val_data_path, allow_pickle=True).tolist()) # 加载val数据,并转换为Tensor格式
- val_dataset = torch.utils.data.TensorDataset(val_data) # 创建val数据集
- val_loader = torch.utils.data.DataLoader(dataset=val_dataset, batch_size=32, shuffle=False) # 创建val数据的数据加载器
- val_outputs = None # 初始化val_outputs变量
- with torch.no_grad(): # 禁用梯度计算
- for i, data in enumerate(tqdm(val_loader)): # 遍历val_loader,显示进度条
- data = data[0].to(device) # 将数据移至GPU
- outputs = model(data) # 模型推理,获取输出
- if i == 0:
- val_outputs = outputs # 若为第一次迭代,直接赋值给val_outputs
- else:
- val_outputs = torch.cat([val_outputs, outputs], dim=0)
- # 否则在dim=0上拼接val_outputs和outputs
-
- del data, outputs # 释放不再需要的Tensor对象
-
- # 输出预测概率
- if not use_BCE:
- val_outputs = torch.softmax(val_outputs, dim=1) # 对val_outputs进行softmax操作
- torch.save(val_outputs, f'evaluate_prediction/{model_index}_prob.pth') # 保存预测概率结果
-
-
- def run(model_indexs, use_BCE):
- # 读取所有的model_prob.pth,并全加在一起
- avg_pred = None # 初始化avg_pred变量
- for i in model_indexs:
- pred = torch.load(f'evaluate_prediction/{i}_prob.pth').data
- # 加载预测概率结果
- if use_BCE:
- # 选取大于0.5的作为预测结果
- pred = (pred > 0.5).int() # 将大于0.5的值转换为整数(0或1)
- pred = pred.reshape(-1) # 将预测结果进行形状重塑
- else:
- # 选取最大的概率作为预测结果
- pred = torch.argmax(pred, dim=1) # 获取最大概率的索引作为预测结果
- pred = pred.cpu().numpy() # 将预测结果转移到CPU上,并转换为NumPy数组
-
- # to_evaluate
- # 读取真实标签
- val_label_path = f'models_input_files/y_val{i}.npy' # 真实标签的路径
- y_true = np.load(val_label_path) # 加载真实标签
-
- # 分类报告
- print(f'model_index = {i}:')
- print(classification_report(y_true, pred, digits=4))
- # 打印分类报告,包括精确度、召回率等指标
-
- zero_acc = 0; one_acc = 0 # 初始化0类和1类的准确率
- zero_num = 0; one_num= 0 # 初始化0类和1类的样本数量
- for i in range(pred.shape[0]):
- if y_true[i] == 0:
- zero_num += 1 # 统计0类的样本数量
- elif y_true[i] == 1:
- one_num += 1 # 统计1类的样本数量
- if pred[i] == y_true[i]:
- if pred[i] == 0:
- zero_acc += 1 # 统计0类的正确预测数量
- elif pred[i] == 1:
- one_acc += 1 # 统计1类的正确预测数量
-
- zero = np.sum(pred == 0) / pred.shape[0] # 计算预测为0类的样本占比
- zero_acc /= zero_num # 计算0类的正确率
- print(f'预测0类占比:{zero} 0类正确率:{zero_acc}')
- one = np.sum(pred == 1) / pred.shape[0] # 计算预测为1类的样本占比
- one_acc /= one_num # 计算1类的正确率
- print(f'预测1类占比:{one} 1类正确率:{one_acc}')
- print('-' * 80)
-
-
- if __name__ == '__main__':
- use_BCE = False # 是否使用BCE损失函数的标志,这里我只用交叉熵CE,所以是False
- inference([2], use_BCE=use_BCE) # 进行推理,传入模型索引和use_BCE标志
- model_indexs = [2] # 模型索引列表
- run(model_indexs, use_BCE=use_BCE) # 进行运行,传入模型索引和use_BCE标志
- import torch
- import pandas as pd
- import warnings # 过滤警告
- warnings.filterwarnings('ignore')
-
- def run(model_indexs, use_BCE):
- # 记录模型数量
- model_num = len(model_indexs)
- # 读取所有的model_prob.pth,并全加在一起
- for i in model_indexs:
- # 加载模型在训练完成后对测试集推理所得的预测文件
- pred = torch.load(f'./models_prediction/{i}_prob.pth', map_location='cpu').data
- # 这里的操作是将每个模型对测试集推理的概率全加在一起
- if i == model_indexs[0]:
- avg_pred = pred
- else:
- avg_pred += pred
-
- # 取平均
- avg_pred /= model_num # 使用全加在一起的预测概率除以模型数量
-
- if use_BCE:
- # 选取概率大于0.5的作为预测结果
- pred = (avg_pred > 0.5).int()
- pred = pred.reshape(-1)
- else:
- # 后处理 - 根据标签数目的反馈,对预测阈值进行调整
- pred[:, 0][pred[:, 0]>0.001] = 1
- pred[:, 1][pred[:, 1]>0.999] = 1.2
- # 选取最大的概率作为预测结果
- pred = torch.argmax(avg_pred, dim=1)
- pred = pred.cpu().numpy()
-
- # to_submit
- # 读取test.csv文件
- test = pd.read_csv('./dataset/testB_submit_exsample.csv')
-
- # 开始写入预测结果
- for i in range(len(pred)):
- test['label'][i] = pred[i]
-
- print(test['label'].value_counts())
- # 保存为提交文件
- test.to_csv(f'submit.csv',index=False)
-
- if __name__ == '__main__':
- run([2], use_BCE=False)
- # run([1,2,3,4,5,6,7,8,9,10], use_BCE=False)
模型优化的思路:
超参数调整、最大序列长度调整、损失函数更改、模型参数冻结
特征工程、模型集成、对比学习、提示学习サ
LLMs:自回归模型
Pretrained => prompt、finetune => RLHF 强化对齐学习
LoRA低秩适应:冻结预训练好的模型权重参数,在冻结原模型参数的情况下,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数。
「instruction --> 」「input: X」「output: Y」
P-tuning v2:在原有的大型语言模型上添加一些新的参数,这些新的参数可以帮助模型更好地理解和处理特定的任务。
微调应用:垂直领域、个性化
在阿里云Pytorch环境中,克隆代码、下载chatglm2-6b模型,
安装依赖,并且运行训练脚本。
xfg_train.sh
- CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
- --model_name_or_path chatglm2-6b \ 本地模型的目录
- --stage sft \ 微调方法
- --use_v2 \ 使用glm2模型微调,默认值true
- --do_train \ 是否训练,默认值true
- --dataset paper_label \ 数据集名字
- --finetuning_type lora \
- --lora_rank 8 \ LoRA 微调中的秩大小
- --output_dir ./output/label_xfg \ 输出lora权重存放目录
- --per_device_train_batch_size 4 \ 用于训练的批处理大小
- --gradient_accumulation_steps 4 \ 梯度累加次数
- --lr_scheduler_type cosine \
- --logging_steps 10 \ 日志输出间隔
- --save_steps 1000 \ 断点保存间隔
- --learning_rate 5e-5 \ 学习率
- --num_train_epochs 4.0 \ 训练轮数
- --fp16 是否使用 fp16 半精度 默认值:False
导入数据
- import pandas as pd
- train_df = pd.read_csv('./csv_data/train.csv')
- testB_df = pd.read_csv('./csv_data/testB.csv')
制作数据集
- res = [] #存储数据样本
-
- for i in range(len(train_df)):# 遍历训练数据的每一行
- paper_item = train_df.loc[i] # 获取当前行的数据
- # 创建一个字典,包含LoRA的指令、输入和输出信息
- tmp = {
- "instruction": "Please judge whether it is a medical field paper according to the given paper title and abstract, output 1 or 0, the following is the paper title and abstract -->",
- "input": f"title:{paper_item[1]},abstract:{paper_item[3]}",
- "output": str(paper_item[5])
- }
- res.append(tmp) # 将字典添加到结果列表中
-
-
- import json #用于保存数据集
-
- # 将制作好的数据集保存到data目录下
- with open('./data/paper_label.json', mode='w', encoding='utf-8') as f:
- json.dump(res, f, ensure_ascii=False, indent=4)
修改data/data_info.json
- {
- "paper_label": {
- "file_name": "paper_label.json"
- }
- }
加载训练好的LoRA权重,进行预测
- from peft import PeftModel
- from transformers import AutoTokenizer, AutoModel, GenerationConfig, AutoModelForCausalLM
-
- # 定义预训练模型的路径
- model_path = "../chatglm2-6b"
- model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda()
- tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
-
- # 加载 label lora权重
- model = PeftModel.from_pretrained(model, './output/label_xfg').half()
- model = model.eval()
-
- # 使用加载的模型和分词器进行聊天,生成回复
- response, history = model.chat(tokenizer, "你好", history=[])
- response
预测函数:
- def predict(text):
- # 使用加载的模型和分词器进行聊天,生成回复
- response, history = model.chat(tokenizer, f"Please judge whether it is a medical field paper according to the given paper title and abstract, output 1 or 0, the following is the paper title and abstract -->{text}", history=[],
- temperature=0.01)
- return response
预测,导出csv
- from tqdm import tqdm #预测过程的进度条
-
- label = [] #存储预测结果
-
-
- for i in tqdm(range(len(testB_df))): # 遍历测试集中的每一条样本
- test_item = testB_df.loc[i] # 测试集中的每一条样本
- # 构建预测函数的输入:prompt
- test_input = f"title:{test_item[1]},author:{test_item[2]},abstract:{test_item[3]}"
- label.append(int(predict(test_input)))# 预测结果存入lable列表
-
- testB_df['label'] = label # 把label列表存入testB_df
-
- # task1虽然只需要label,但需要有一个keywords列,用个随意的字符串代替
- testB_df['Keywords'] = ['tmp' for _ in range(2000)]
-
- # 制作submit,提交submit
- submit = testB_df[['uuid', 'Keywords', 'label']]
- submit.to_csv('submit.csv', index=False)
提交结果:
ライト
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。