赞
踩
版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://mp.csdn.net/postedit
(1)准备数据
在python环境下,或者Anaconda3环境下,pip安装/conda安装labelme。进行数据的像素点标注。
(2)将数据转化为我们需要的,参考博客;
https://blog.csdn.net/weixin_40877924/article/details/95798461
有可能出现numpy的问题,importerror cannot import name ‘_validate_lengths’
解决办法:找到:C:\Users\Administrat\Anaconda3\Lib\site-packages\numpy\lib\arraypad .py,打开.py文件,找到第954行,添加下面两个函数保存。
def _normalize_shape(ndarray, shape, cast_to_int=True): """ Private function which does some checks and normalizes the possibly much simpler representations of ‘pad_width‘, ‘stat_length‘, ‘constant_values‘, ‘end_values‘. Parameters ---------- narray : ndarray Input ndarray shape : {sequence, array_like, float, int}, optional The width of padding (pad_width), the number of elements on the edge of the narray used for statistics (stat_length), the constant value(s) to use when filling padded regions (constant_values), or the endpoint target(s) for linear ramps (end_values). ((before_1, after_1), ... (before_N, after_N)) unique number of elements for each axis where `N` is rank of `narray`. ((before, after),) yields same before and after constants for each axis. (constant,) or val is a shortcut for before = after = constant for all axes. cast_to_int : bool, optional Controls if values in ``shape`` will be rounded and cast to int before being returned. Returns ------- normalized_shape : tuple of tuples val => ((val, val), (val, val), ...) [[val1, val2], [val3, val4], ...] => ((val1, val2), (val3, val4), ...) ((val1, val2), (val3, val4), ...) => no change [[val1, val2], ] => ((val1, val2), (val1, val2), ...) ((val1, val2), ) => ((val1, val2), (val1, val2), ...) [[val , ], ] => ((val, val), (val, val), ...) ((val , ), ) => ((val, val), (val, val), ...) """ ndims = ndarray.ndim # Shortcut shape=None if shape is None: return ((None, None),) * ndims # Convert any input `info` to a NumPy array shape_arr = np.asarray(shape) try: shape_arr = np.broadcast_to(shape_arr, (ndims, 2)) except ValueError: fmt = "Unable to create correctly shaped tuple from %s" raise ValueError(fmt % (shape,)) # Cast if necessary if cast_to_int is True: shape_arr = np.round(shape_arr).astype(int) # Convert list of lists to tuple of tuples return tuple(tuple(axis) for axis in shape_arr.tolist()) def _validate_lengths(narray, number_elements): """ Private function which does some checks and reformats pad_width and stat_length using _normalize_shape. Parameters ---------- narray : ndarray Input ndarray number_elements : {sequence, int}, optional The width of padding (pad_width) or the number of elements on the edge of the narray used for statistics (stat_length). ((before_1, after_1), ... (before_N, after_N)) unique number of elements for each axis. ((before, after),) yields same before and after constants for each axis. (constant,) or int is a shortcut for before = after = constant for all axes. Returns ------- _validate_lengths : tuple of tuples int => ((int, int), (int, int), ...) [[int1, int2], [int3, int4], ...] => ((int1, int2), (int3, int4), ...) ((int1, int2), (int3, int4), ...) => no change [[int1, int2], ] => ((int1, int2), (int1, int2), ...) ((int1, int2), ) => ((int1, int2), (int1, int2), ...) [[int , ], ] => ((int, int), (int, int), ...) ((int , ), ) => ((int, int), (int, int), ...) """ normshp = _normalize_shape(narray, number_elements) for i in normshp: chk = [1 if x is None else x for x in i] chk = [1 if x >= 0 else -1 for x in chk] if (chk[0] < 0) or (chk[1] < 0): fmt = "%s cannot contain negative values." raise ValueError(fmt % (number_elements,)) return normshp ############################################################################### # Public functions
或者参考博客:https://blog.csdn.net/TeFuirnever/article/details/90762287
(3)得到文件大致如下:
(4)将数据传到服务器中,只需要imges_dir和labels_dir。
(5)修改你的deeplabv3程序中,将输入数据转化为.csv格式的.py文件。改变你的类别等相关信息。
(6)更改你训练.py中的相关参数。训练即可。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。