赞
踩
输入层:
卷积层:
卷积层(包含有卷积核、卷积层参数、激励函数):使用卷积核进行特征提取和特征映射。
3×3核的卷积核(卷积核一般采用3×3或2×2),卷积过程如下图:
池化层:
在卷积层进行特征提取后,输出的特征图会被传递至池化层进行特征选择和信息过滤。
池化层包含预设定的池化函数,其功能是将特征图中单个点的结果替换为其相邻区域的特征图统计量。
池化层选取池化区域与卷积核扫描特征图步骤相同,由池化大小、步长和填充控制。
最大池化——>它只是输出在区域中观察到的最大输入值。
均值池化——>它只是输出在区域中观察到的平均输入值。
两者最大区别在于卷积核的不同(池化是一种特殊的卷积过程)。
全连接层:
卷积神经网络中的全连接层等价于传统前馈神经网络中的隐含层(每个神经元与上一层的所有神经元相连)。
全连接层位于卷积神经网络隐含层的最后部分,并只向其它全连接层传递信号。
特征图在全连接层中会失去空间拓扑结构,被展开为向量并通过激励函数。
全连接层的作用则是对提取的特征进行非线性组合以得到输出,即全连接层本身不被期望具有特征提取能力,而是试图利用现有的高阶特征完成学习目标。
输出层:
卷积神经网络中输出层的上游通常是全连接层,因此其结构和工作原理与传统前馈神经网络中的输出层相同。
对于图像分类问题,输出层使用逻辑函数或归一化指数函数(softmax function)输出分类标签。
在物体识别(object detection)问题中,输出层可设计为输出物体的中心坐标、大小和分类。
在图像语义分割中,输出层直接输出每个像素的分类结果。
应用领域:
卷积神经网络在计算机视觉识别上的全过程,如下图所示:
conda create -n tf1 python=3.6
激活环境:
activate
conda activate tf1
安装 tensorflow、keras 库。
在新建的虚拟环境 tf1 内,使用以下命令安装两个库:
pip install tensorflow==1.14.0 -i “https://pypi.doubanio.com/simple/”
pip install keras==2.2.5 -i “https://pypi.doubanio.com/simple/”
安装 nb_conda_kernels 包。
conda install nb_conda_kernels
安装完后如下图所示:
重新打开 Jupyter Notebook(tf1)环境下的
点击【New】→【Python[tf1环境下的]】创建 python 文件。
猫狗图片数据集下载:数据集
提取码:ruyn
数据集下载完毕后,解压缩,并放在一个没有中文路径下,如下图所示:
对猫狗图像进行分类,代码如下:
import os, shutil # 原始目录所在的路径 original_dataset_dir = 'E:\\Cat_And_Dog\\train\\' # 数据集分类后的目录 base_dir = 'E:\\Cat_And_Dog\\train1' os.mkdir(base_dir) # # 训练、验证、测试数据集的目录 train_dir = os.path.join(base_dir, 'train') os.mkdir(train_dir) validation_dir = os.path.join(base_dir, 'validation') os.mkdir(validation_dir) test_dir = os.path.join(base_dir, 'test') os.mkdir(test_dir) # 猫训练图片所在目录 train_cats_dir = os.path.join(train_dir, 'cats') os.mkdir(train_cats_dir) # 狗训练图片所在目录 train_dogs_dir = os.path.join(train_dir, 'dogs') os.mkdir(train_dogs_dir) # 猫验证图片所在目录 validation_cats_dir = os.path.join(validation_dir, 'cats') os.mkdir(validation_cats_dir) # 狗验证数据集所在目录 validation_dogs_dir = os.path.join(validation_dir, 'dogs') os.mkdir(validation_dogs_dir) # 猫测试数据集所在目录 test_cats_dir = os.path.join(test_dir, 'cats') os.mkdir(test_cats_dir) # 狗测试数据集所在目录 test_dogs_dir = os.path.join(test_dir, 'dogs') os.mkdir(test_dogs_dir) # 将前1000张猫图像复制到train_cats_dir fnames = ['cat.{}.jpg'.format(i) for i in range(1000)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(train_cats_dir, fname) shutil.copyfile(src, dst) # 将下500张猫图像复制到validation_cats_dir fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(validation_cats_dir, fname) shutil.copyfile(src, dst) # 将下500张猫图像复制到test_cats_dir fnames = ['cat.{}.jpg'.format(i) for i in range(1500, 2000)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(test_cats_dir, fname) shutil.copyfile(src, dst) # 将前1000张狗图像复制到train_dogs_dir fnames = ['dog.{}.jpg'.format(i) for i in range(1000)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(train_dogs_dir, fname) shutil.copyfile(src, dst) # 将下500张狗图像复制到validation_dogs_dir fnames = ['dog.{}.jpg'.format(i) for i in range(1000, 1500)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(validation_dogs_dir, fname) shutil.copyfile(src, dst) # 将下500张狗图像复制到test_dogs_dir fnames = ['dog.{}.jpg'.format(i) for i in range(1500, 2000)] for fname in fnames: src = os.path.join(original_dataset_dir, fname) dst = os.path.join(test_dogs_dir, fname) shutil.copyfile(src, dst)
分类后如下图所示:
查看分类后,对应目录下的图片数量:
#输出数据集对应目录下图片数量
print('total training cat images:', len(os.listdir(train_cats_dir)))
print('total training dog images:', len(os.listdir(train_dogs_dir)))
print('total validation cat images:', len(os.listdir(validation_cats_dir)))
print('total validation dog images:', len(os.listdir(validation_dogs_dir)))
print('total test cat images:', len(os.listdir(test_cats_dir)))
print('total test dog images:', len(os.listdir(test_dogs_dir)))
结果:
猫狗训练图片各 1000 张,验证图片各 500 张,测试图片各 500 张。
第①步:构建网络模型:
#网络模型构建 from keras import layers from keras import models #keras的序贯模型 model = models.Sequential() #卷积层,卷积核是3*3,激活函数relu model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3))) #最大池化层 model.add(layers.MaxPooling2D((2, 2))) #卷积层,卷积核2*2,激活函数relu model.add(layers.Conv2D(64, (3, 3), activation='relu')) #最大池化层 model.add(layers.MaxPooling2D((2, 2))) #卷积层,卷积核是3*3,激活函数relu model.add(layers.Conv2D(128, (3, 3), activation='relu')) #最大池化层 model.add(layers.MaxPooling2D((2, 2))) #卷积层,卷积核是3*3,激活函数relu model.add(layers.Conv2D(128, (3, 3), activation='relu')) #最大池化层 model.add(layers.MaxPooling2D((2, 2))) #flatten层,用于将多维的输入一维化,用于卷积层和全连接层的过渡 model.add(layers.Flatten()) #全连接,激活函数relu model.add(layers.Dense(512, activation='relu')) #全连接,激活函数sigmoid model.add(layers.Dense(1, activation='sigmoid'))
运行后出现以下错误:
这是由于 numpy 版本与 tensorflow 版本不匹配的问题,安装 1.16.4 版本的 numpy 即可,命令如下:
pip install numpy==1.16.4 -i "https://pypi.doubanio.com/simple/"
安装完成后,会自动卸载已有的 numpy 版本。
重新再运行程序,就没有错误了,但是有警告(因为版本比较老了),没事。
查看模型各层的参数状况:
#输出模型各层的参数状况
model.summary()
结果如下图所示:
第②步:配置优化器:
loss:计算损失,这里用的是交叉熵损失
metrics:列表,包含评估模型在训练和测试时的性能的指标
from keras import optimizers
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=['acc'])
第③步:图片格式转化
所有图片(2000张)重设尺寸大小为 150x150 大小,并使用 ImageDataGenerator 工具将本地图片 .jpg 格式转化成 RGB 像素网格,再转化成浮点张量上传到网络上。
from keras.preprocessing.image import ImageDataGenerator # 所有图像将按1/255重新缩放 train_datagen = ImageDataGenerator(rescale=1./255) test_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( # 这是目标目录 train_dir, # 所有图像将调整为150x150 target_size=(150, 150), batch_size=20, # 因为我们使用二元交叉熵损失,我们需要二元标签 class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_dir, target_size=(150, 150), batch_size=20, class_mode='binary')
输出结果:
查看上述图像预处理过程中生成器的输出
#查看上面对于图片预处理的处理结果
for data_batch, labels_batch in train_generator:
print('data batch shape:', data_batch.shape)
print('labels batch shape:', labels_batch.shape)
break
如果出现错误:ImportError: Could not import PIL.Image. The use of load_img
requires PIL,是因为没有安装 pillow 库导致的,使用如下命令在 tf1 虚拟环境中安装:
pip install pillow -i “https://pypi.doubanio.com/simple/”
安装完毕后,关闭 Jupyter Notebook 重新打开,重新运行一遍程序即可。
输出结果如下:
第④步:开始训练模型(此时,我的电脑在飞速运转…)。
#模型训练过程
history = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=30,
validation_data=validation_generator,
validation_steps=50)
电脑性能越好,它训练得越快。
第⑤步:保存模型。
#保存训练得到的的模型
model.save('G:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small_1.h5')
第⑥步:结果可视化(需要在 tf1 虚拟环境中安装 matplotlib 库,命令:pip install matplotlib -i “https://pypi.doubanio.com/simple/”)。
#对于模型进行评估,查看预测的准确性 import matplotlib.pyplot as plt acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.legend() plt.show()
训练结果如上图所示,很明显模型上来就过拟合了,主要原因是数据不够,或者说相对于数据量,模型过复杂(训练损失在第30个epoch就降为0了),训练精度随着时间线性增长,直到接近100%,而我们的验证精度停留在70-72%。我们的验证损失在5个epoch后达到最小,然后停止,而训练损失继续线性下降,直到接近0。
数据集增强主要是为了减少网络的过拟合现象,通过对训练图片进行变换可以得到泛化能力更强的网络,更好的适应应用场景。
常用的数据增强方法有:
重新构建模型:
上面建完的模型就保留着,我们重新建一个 .ipynb 文件,重新开始建模。
首先猫狗图像预处理,只不过这里将分类好的数据集放在 train2 文件夹中,其它的都一样。
然后配置网络模型、构建优化器,然后进行数据增强,代码如下:
图像数据生成器增强数据:
from keras.preprocessing.image import ImageDataGenerator
datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
参数解释:
查看数据增强后的效果:
import matplotlib.pyplot as plt # This is module with image preprocessing utilities from keras.preprocessing import image fnames = [os.path.join(train_cats_dir, fname) for fname in os.listdir(train_cats_dir)] # We pick one image to "augment" img_path = fnames[3] # Read the image and resize it img = image.load_img(img_path, target_size=(150, 150)) # Convert it to a Numpy array with shape (150, 150, 3) x = image.img_to_array(img) # Reshape it to (1, 150, 150, 3) x = x.reshape((1,) + x.shape) # The .flow() command below generates batches of randomly transformed images. # It will loop indefinitely, so we need to `break` the loop at some point! i = 0 for batch in datagen.flow(x, batch_size=1): plt.figure(i) imgplot = plt.imshow(image.array_to_img(batch[0])) i += 1 if i % 4 == 0: break plt.show()
结果如下(共4张,这里只截取了三张):
图片格式转化。
train_datagen = ImageDataGenerator( rescale=1./255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True,) # Note that the validation data should not be augmented! test_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( # This is the target directory train_dir, # All images will be resized to 150x150 target_size=(150, 150), batch_size=32, # Since we use binary_crossentropy loss, we need binary labels class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_dir, target_size=(150, 150), batch_size=32, class_mode='binary')
开始训练并保存结果。
history = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=100,
validation_data=validation_generator,
validation_steps=50)
model.save('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small_2.h5')
训练结果如下:
结果可视化:
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
如下图所示:
由于数据量的增加,对比基准模型,可以很明显的观察到曲线没有过度拟合了,训练曲线紧密地跟踪验证曲线,这也就是数据增强带来的影响,但是可以发现它的波动幅度还是比较大的。
下面在此数据增强的基础上,再增加一层 dropout 层,再来训练看看。
Dropout层在神经网络层当中是用来干嘛的呢?它是一种可以用于减少神经网络过拟合的结构,那么它具体是怎么实现的呢?
假设下图是我们用来训练的原始神经网络:
一共有四个输入 xi,一个输出 y 。Dropout 则是在每一个 batch 的训练当中随机减掉一些神经元,而作为编程者,我们可以设定每一层 dropout(将神经元去除的多少)的概率,在设定之后,就可以得到第一个 batch 进行训练的结果:
从上图我们可以看到一些神经元之间断开了连接,因此它们被 dropout 了!dropout顾名思义就是被拿掉的意思,正因为我们在神经网络当中拿掉了一些神经元,所以才叫做 dropout 层。
具体实现:
在数据增强的基础上,再添加一个 dropout 层。
#退出层
model.add(layers.Dropout(0.5))
如下图所示,仅在构建网络模型时添加一层即可,其余部分不变:
再次训练模型,查看训练结果如下:
相比于只使用数据增强的效果来看,额外添加一层 dropout 层,仔细对比,可以发现训练曲线更加紧密地跟踪验证曲线,波动的幅度也降低了些,训练效果更棒了。
基于Tensorflow和Keras实现卷积神经网络CNN
【TensorFlow&Keras】入门猫狗数据集实验–理解卷积神经网络CNN
基于jupyter notebook的python编程-----猫狗数据集的阶段分类得到模型精度并进行数据集优化
【深度学习】:一文入门Dropout层
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。