赞
踩
import cv2 import time import os import matplotlib.pyplot as plt import torch from torch import nn import torchvision.models as models import torchvision.transforms as transforms import numpy as np imgname = 'bottle_broken_large.png' savepath='vis_resnet50/features_bottle' if not os.path.isdir(savepath): os.makedirs(savepath) def draw_features(width,height,x,savename): tic = time.time() fig = plt.figure(figsize=(16, 16)) fig.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95, wspace=0.05, hspace=0.05) for i in range(width*height): plt.subplot(height, width, i + 1) plt.axis('off') img = x[0, i, :, :] pmin = np.min(img) pmax = np.max(img) img = ((img - pmin) / (pmax - pmin + 0.000001))*255 #float在[0,1]之间,转换成0-255 img=img.astype(np.uint8) #转成unit8 img=cv2.applyColorMap(img, cv2.COLORMAP_JET) #生成heat map img = img[:, :, ::-1]#注意cv2(BGR)和matplotlib(RGB)通道是相反的 plt.imshow(img) print("{}/{}".format(i,width*height)) fig.savefig(savename, dpi=100) fig.clf() plt.close() print("time:{}".format(time.time()-tic)) class ft_net(nn.Module): def __init__(self): super(ft_net, self).__init__() model_ft = models.resnet50(pretrained=True) self.model = model_ft def forward(self, x): if True: # draw features or not x = self.model.conv1(x) draw_features(8, 8, x.cpu().numpy(),"{}/f1_conv1.png".format(savepath)) x = self.model.bn1(x) draw_features(8, 8, x.cpu().numpy(),"{}/f2_bn1.png".format(savepath)) x = self.model.relu(x) draw_features(8, 8, x.cpu().numpy(), "{}/f3_relu.png".format(savepath)) x = self.model.maxpool(x) draw_features(8, 8, x.cpu().numpy(), "{}/f4_maxpool.png".format(savepath)) x = self.model.layer1(x) draw_features(16, 16, x.cpu().numpy(), "{}/f5_layer1.png".format(savepath)) x = self.model.layer2(x) draw_features(16, 32, x.cpu().numpy(), "{}/f6_layer2.png".format(savepath)) x = self.model.layer3(x) draw_features(32, 32, x.cpu().numpy(), "{}/f7_layer3.png".format(savepath)) x = self.model.layer4(x) draw_features(32, 32, x.cpu().numpy()[:, 0:1024, :, :], "{}/f8_layer4_1.png".format(savepath)) draw_features(32, 32, x.cpu().numpy()[:, 1024:2048, :, :], "{}/f8_layer4_2.png".format(savepath)) x = self.model.avgpool(x) plt.plot(np.linspace(1, 2048, 2048), x.cpu().numpy()[0, :, 0, 0]) plt.savefig("{}/f9_avgpool.png".format(savepath)) plt.clf() plt.close() x = x.view(x.size(0), -1) x = self.model.fc(x) plt.plot(np.linspace(1, 1000, 1000), x.cpu().numpy()[0, :]) plt.savefig("{}/f10_fc.png".format(savepath)) plt.clf() plt.close() else : x = self.model.conv1(x) x = self.model.bn1(x) x = self.model.relu(x) x = self.model.maxpool(x) x = self.model.layer1(x) x = self.model.layer2(x) x = self.model.layer3(x) x = self.model.layer4(x) x = self.model.avgpool(x) x = x.view(x.size(0), -1) x = self.model.fc(x) return x model = ft_net().cuda() # pretrained_dict = resnet50.state_dict() # pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} # model_dict.update(pretrained_dict) # net.load_state_dict(model_dict) model.eval() img = cv2.imread(imgname) img = cv2.resize(img, (288, 288)) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) img = transform(img).cuda() img = img.unsqueeze(0) with torch.no_grad(): start = time.time() out = model(img) print("total time:{}".format(time.time()-start)) result = out.cpu().numpy() # ind=np.argmax(out.cpu().numpy()) ind = np.argsort(result, axis=1) for i in range(5): print("predict:top {} = cls {} : score {}".format(i+1,ind[0,1000-i-1],result[0,1000-i-1])) print("done")
可视化结果:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。