当前位置:   article > 正文

Pytorch: 利用预训练的残差网络ResNet50进行图像特征提取,并可视化特征图&热图

Pytorch: 利用预训练的残差网络ResNet50进行图像特征提取,并可视化特征图&热图

1. 残差网络ResNet的结构

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.图像特征提取和可视化分析

import cv2
import time
import os
import matplotlib.pyplot as plt
import torch
from torch import nn
import torchvision.models as models
import torchvision.transforms as transforms
import numpy as np

imgname = 'bottle_broken_large.png' 
savepath='vis_resnet50/features_bottle'
if not os.path.isdir(savepath):
    os.makedirs(savepath)

def draw_features(width,height,x,savename):
    tic = time.time()
    fig = plt.figure(figsize=(16, 16))
    fig.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95, wspace=0.05, hspace=0.05)
    for i in range(width*height):
        plt.subplot(height, width, i + 1)
        plt.axis('off')
        img = x[0, i, :, :]
        pmin = np.min(img)
        pmax = np.max(img)
        img = ((img - pmin) / (pmax - pmin + 0.000001))*255  #float在[0,1]之间,转换成0-255
        img=img.astype(np.uint8)  #转成unit8
        img=cv2.applyColorMap(img, cv2.COLORMAP_JET) #生成heat map
        img = img[:, :, ::-1]#注意cv2(BGR)和matplotlib(RGB)通道是相反的
        plt.imshow(img)
        print("{}/{}".format(i,width*height))
    fig.savefig(savename, dpi=100)
    fig.clf()
    plt.close()
    print("time:{}".format(time.time()-tic))


class ft_net(nn.Module):

    def __init__(self):
        super(ft_net, self).__init__()
        model_ft = models.resnet50(pretrained=True)
        self.model = model_ft

    def forward(self, x):
        if True: # draw features or not
            x = self.model.conv1(x)
            draw_features(8, 8, x.cpu().numpy(),"{}/f1_conv1.png".format(savepath))

            x = self.model.bn1(x)
            draw_features(8, 8, x.cpu().numpy(),"{}/f2_bn1.png".format(savepath))

            x = self.model.relu(x)
            draw_features(8, 8, x.cpu().numpy(), "{}/f3_relu.png".format(savepath))

            x = self.model.maxpool(x)
            draw_features(8, 8, x.cpu().numpy(), "{}/f4_maxpool.png".format(savepath))

            x = self.model.layer1(x)
            draw_features(16, 16, x.cpu().numpy(), "{}/f5_layer1.png".format(savepath))

            x = self.model.layer2(x)
            draw_features(16, 32, x.cpu().numpy(), "{}/f6_layer2.png".format(savepath))

            x = self.model.layer3(x)
            draw_features(32, 32, x.cpu().numpy(), "{}/f7_layer3.png".format(savepath))

            x = self.model.layer4(x)
            draw_features(32, 32, x.cpu().numpy()[:, 0:1024, :, :], "{}/f8_layer4_1.png".format(savepath))
            draw_features(32, 32, x.cpu().numpy()[:, 1024:2048, :, :], "{}/f8_layer4_2.png".format(savepath))

            x = self.model.avgpool(x)
            plt.plot(np.linspace(1, 2048, 2048), x.cpu().numpy()[0, :, 0, 0])
            plt.savefig("{}/f9_avgpool.png".format(savepath))
            plt.clf()
            plt.close()

            x = x.view(x.size(0), -1)
            x = self.model.fc(x)
            plt.plot(np.linspace(1, 1000, 1000), x.cpu().numpy()[0, :])
            plt.savefig("{}/f10_fc.png".format(savepath))
            plt.clf()
            plt.close()
        else :
            x = self.model.conv1(x)
            x = self.model.bn1(x)
            x = self.model.relu(x)
            x = self.model.maxpool(x)
            x = self.model.layer1(x)
            x = self.model.layer2(x)
            x = self.model.layer3(x)
            x = self.model.layer4(x)
            x = self.model.avgpool(x)
            x = x.view(x.size(0), -1)
            x = self.model.fc(x)

        return x


model = ft_net().cuda()

# pretrained_dict = resnet50.state_dict()
# pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# model_dict.update(pretrained_dict)
# net.load_state_dict(model_dict)
model.eval()
img = cv2.imread(imgname)
img = cv2.resize(img, (288, 288))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
img = transform(img).cuda()
img = img.unsqueeze(0)

with torch.no_grad():
    start = time.time()
    out = model(img)
    print("total time:{}".format(time.time()-start))
    result = out.cpu().numpy()
    # ind=np.argmax(out.cpu().numpy())
    ind = np.argsort(result, axis=1)
    for i in range(5):
        print("predict:top {} = cls {} : score {}".format(i+1,ind[0,1000-i-1],result[0,1000-i-1]))
    print("done")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125

可视化结果:

在这里插入图片描述

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/434216
推荐阅读
相关标签
  

闽ICP备14008679号