赞
踩
The linear feedback shift register is implemented as a series of Flip-Flops inside of an FPGA that are wired together as a shift register. Several taps off of the shift register chain are used as inputs to either an XOR or XNOR gate. The output of this gate is then used as feedback to the beginning of the shift register chain, hence the Feedback in LFSR.
产生伪随机数的方法最常见的是利用一种线性反馈移位寄存器(LFSR)。它是由n个D触发器和若干个异或门组成的,如图:
其中,gn为反馈系数,取值只能为0或1,取为0时表明不存在该反馈之路,取为1时表明存在该反馈之路;n个D触发器最多可以提供2^n-1个状态(不包括全0的状态),为了保证这些状态没有重复,gn的选择必须满足一定的条件。下面以n=3,g0=1,g1=1,g2=0,g3=1为例,说明LFSR的特性,具有该参数的LFSR结构如下图:
假设在开始时,D2D1D0=111(seed),那么,当时钟到来时,有:
D2=D1_OUT=1;
D1=D0_OUT^D2_OUT=0;
D0=D2_OUT=1;
即D2D1D0=101;同理,又一个时钟到来时,可得D2D1D0=001. ………………
画出状态转移图如下:
从图可以看出,正好有2^3-1=7个状态,不包括全0;
如果您理解了上图,至少可以得到三条结论:
1)初始状态是由SEED提供的;
2)当反馈系数不同时,得到的状态转移图也不同;必须保证gn===1。
3)D触发器的个数越多,产生的状态就越多,也就越“随机”;
verilog实现
<pre name="code" class="plain">//文章地址:http://www.nandland.com/vhdl/modules/lfsr-linear-feedback-shift-register.html
//程序地址:http://www.nandland.com/verilog/modules/code/LFSR.v
///
// File downloaded from http://www.nandland.com
///
// Description:
// A LFSR or Linear Feedback Shift Register is a quick and easy way to generate
// pseudo-random data inside of an FPGA. The LFSR can be used for things like
// counters, test patterns, scrambling of data, and others. This module
// creates an LFSR whose width gets set by a parameter. The o_LFSR_Done will
// pulse once all combinations of the LFSR are complete. The number of clock
// cycles that it takes o_LFSR_Done to pulse is equal to 2^g_Num_Bits-1. For
// example setting g_Num_Bits to 5 means that o_LFSR_Done will pulse every
// 2^5-1 = 31 clock cycles. o_LFSR_Data will change on each clock cycle that
// the module is enabled, which can be used if desired.
//
// Parameters:
// NUM_BITS - Set to the integer number of bits wide to create your LFSR.
///
module LFSR #(parameter NUM_BITS)
(
input i_Clk,
input i_Enable,
// Optional Seed Value
input i_Seed_DV,
input [NUM_BITS-1:0] i_Seed_Data,
output [NUM_BITS-1:0] o_LFSR_Data,
output o_LFSR_Done
);
reg [NUM_BITS:1] r_LFSR = 0;
reg r_XNOR;
// Purpose: Load up LFSR with Seed if Data Valid (DV) pulse is detected.
// Othewise just run LFSR when enabled.
// 初始化seed值可以选择载入,
always @(posedge i_Clk)
begin
if (i_Enable == 1'b1)
begin
if (i_Seed_DV == 1'b1)
r_LFSR <= i_Seed_Data;
else
r_LFSR <= {r_LFSR[NUM_BITS-1:1], r_XNOR};
end
end
// Create Feedback Polynomials. Based on Application Note:
// http://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
//使用同或运算,初始化种子不能全1
always @(*)
begin
case (NUM_BITS)
3: begin
r_XNOR = r_LFSR[3] ^~ r_LFSR[2];
end
4: begin
r_XNOR = r_LFSR[4] ^~ r_LFSR[3];
end
5: begin
r_XNOR = r_LFSR[5] ^~ r_LFSR[3];
end
6: begin
r_XNOR = r_LFSR[6] ^~ r_LFSR[5];
end
7: begin
r_XNOR = r_LFSR[7] ^~ r_LFSR[6];
end
8: begin
r_XNOR = r_LFSR[8] ^~ r_LFSR[6] ^~ r_LFSR[5] ^~ r_LFSR[4];
end
9: begin
r_XNOR = r_LFSR[9] ^~ r_LFSR[5];
end
10: begin
r_XNOR = r_LFSR[10] ^~ r_LFSR[7];
end
11: begin
r_XNOR = r_LFSR[11] ^~ r_LFSR[9];
end
12: begin
r_XNOR = r_LFSR[12] ^~ r_LFSR[6] ^~ r_LFSR[4] ^~ r_LFSR[1];
end
13: begin
r_XNOR = r_LFSR[13] ^~ r_LFSR[4] ^~ r_LFSR[3] ^~ r_LFSR[1];
end
14: begin
r_XNOR = r_LFSR[14] ^~ r_LFSR[5] ^~ r_LFSR[3] ^~ r_LFSR[1];
end
15: begin
r_XNOR = r_LFSR[15] ^~ r_LFSR[14];
end
16: begin
r_XNOR = r_LFSR[16] ^~ r_LFSR[15] ^~ r_LFSR[13] ^~ r_LFSR[4];
end
17: begin
r_XNOR = r_LFSR[17] ^~ r_LFSR[14];
end
18: begin
r_XNOR = r_LFSR[18] ^~ r_LFSR[11];
end
19: begin
r_XNOR = r_LFSR[19] ^~ r_LFSR[6] ^~ r_LFSR[2] ^~ r_LFSR[1];
end
20: begin
r_XNOR = r_LFSR[20] ^~ r_LFSR[17];
end
21: begin
r_XNOR = r_LFSR[21] ^~ r_LFSR[19];
end
22: begin
r_XNOR = r_LFSR[22] ^~ r_LFSR[21];
end
23: begin
r_XNOR = r_LFSR[23] ^~ r_LFSR[18];
end
24: begin
r_XNOR = r_LFSR[24] ^~ r_LFSR[23] ^~ r_LFSR[22] ^~ r_LFSR[17];
end
25: begin
r_XNOR = r_LFSR[25] ^~ r_LFSR[22];
end
26: begin
r_XNOR = r_LFSR[26] ^~ r_LFSR[6] ^~ r_LFSR[2] ^~ r_LFSR[1];
end
27: begin
r_XNOR = r_LFSR[27] ^~ r_LFSR[5] ^~ r_LFSR[2] ^~ r_LFSR[1];
end
28: begin
r_XNOR = r_LFSR[28] ^~ r_LFSR[25];
end
29: begin
r_XNOR = r_LFSR[29] ^~ r_LFSR[27];
end
30: begin
r_XNOR = r_LFSR[30] ^~ r_LFSR[6] ^~ r_LFSR[4] ^~ r_LFSR[1];
end
31: begin
r_XNOR = r_LFSR[31] ^~ r_LFSR[28];
end
32: begin
r_XNOR = r_LFSR[32] ^~ r_LFSR[22] ^~ r_LFSR[2] ^~ r_LFSR[1];
end
endcase // case (NUM_BITS)
end // always @ (*)
assign o_LFSR_Data = r_LFSR[NUM_BITS:1];
// Conditional Assignment (?)
//一个循坏结束,数据个数2^NUM_BITS -1
assign o_LFSR_Done = (r_LFSR[NUM_BITS:1] == i_Seed_Data) ? 1'b1 : 1'b0;
endmodule // LFSR
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
`timescale 1ns / 100ps
`define N_BITS 4
module tb_lfsr;
reg i_Clk;
reg i_Enable;
// Optional Seed Value
reg i_Seed_DV;
reg [`N_BITS-1:0] i_Seed_Data;
wire [`N_BITS-1:0] o_LFSR_Data;
wire o_LFSR_Done;
LFSR #(.NUM_BITS(`N_BITS)) dut( .i_Clk(i_Clk),
.i_Enable(i_Enable),
.i_Seed_DV(i_Seed_DV),
.i_Seed_Data(i_Seed_Data),
.o_LFSR_Data(o_LFSR_Data),
.o_LFSR_Done(o_LFSR_Done));
always #10 i_Clk = ~i_Clk;
initial begin
i_Clk = 0;
i_Enable = 0;
i_Seed_DV = 0;
i_Seed_Data = 0;
#15;
i_Enable = 1;
i_Seed_DV = 1;
@(posedge i_Clk);
#5;
i_Seed_DV = 0;
end
endmodule
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。