赞
踩
优化参数为:学习率,隐含层节点,正则化参数。评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
%% CNN-BILSTM多变量回归预测
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
P_train = xlsread('data','training set','B2:G191')';
T_train= xlsread('data','training set','H2:H191')';
% 测试集——44个样本
P_test=xlsread('data','test set','B2:G45')';
T_test=xlsread('data','test set','H2:H45')';
%% 划分训练集和测试集
M = size(P_train, 2);
N = size(P_test, 2);
%% 数据归一化
[inputn_train,inputps]=mapminmax(P_train);
inputn_test=mapminmax('apply',P_test,inputps);
[outputn_train,outputps]=mapminmax(T_train);
outputn_test=mapminmax('apply',T_test,outputps);
%% 创建元胞或向量,长度为训练集大小;
XrTrain = cell(size(inputn_train,2),1);
YrTrain = zeros(size(outputn_train,2),1);
for i=1:size(inputn_train,2)
XrTrain{i,1} = inputn_train(:,i);
YrTrain(i,1) = outputn_train(:,i);
end
% 创建元胞或向量,长度为测试集大小;
XrTest = cell(size(inputn_test,2),1);
YrTest = zeros(size(outputn_test,2),1);
for i=1:size(P_test,2)
XrTest{i,1} = inputn_test(:,i);
YrTest(i,1) = outputn_test(:,i);
end
%% 优化算法参数设置
%参数取值上界(学习率,隐藏层节点,正则化系数)
fitness = @fical;
%% 贝叶斯优化参数范围
optimVars = [
optimizableVariable('NumOfUnits', [10, 50], 'Type', 'integer')
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。