当前位置:   article > 正文

【动态规划 状态机dp 性能优化】3098. 求出所有子序列的能量和

【动态规划 状态机dp 性能优化】3098. 求出所有子序列的能量和

本文涉及知识点

动态规划 状态机dp 性能优化

LeetCode3098. 求出所有子序列的能量和

给你一个长度为 n 的整数数组 nums 和一个 正 整数 k 。
一个子序列的 能量 定义为子序列中 任意 两个元素的差值绝对值的 最小值 。
请你返回 nums 中长度 等于 k 的 所有 子序列的 能量和 。
由于答案可能会很大,将答案对 109 + 7 取余 后返回。
示例 1:
输入:nums = [1,2,3,4], k = 3
输出:4
解释:
nums 中总共有 4 个长度为 3 的子序列:[1,2,3] ,[1,3,4] ,[1,2,4] 和 [2,3,4] 。能量和为 |2 - 3| + |3 - 4| + |2 - 1| + |3 - 4| = 4 。
示例 2:
输入:nums = [2,2], k = 2
输出:0
解释:
nums 中唯一一个长度为 2 的子序列是 [2,2] 。能量和为 |2 - 2| = 0 。
示例 3:
输入:nums = [4,3,-1], k = 2
输出:10
解释:
nums 总共有 3 个长度为 2 的子序列:[4,3] ,[4,-1] 和 [3,-1] 。能量和为 |4 - 3| + |4 - (-1)| + |3 - (-1)| = 10 。

提示:
2 <= n == nums.length <= 50
-108 <= nums[i] <= 108
2 <= k <= n

动态规划(状态机dp)初版

动态规划的状态 表示

pre 表示已经处理完前x个数组符合条件的数量,dp表示已经处理完x+1数组符合条件的数量。

pre[i][j][end][len] 表示此子序列:
a,长度为len。
b,以nums[end]结束。
c,nums[j]-nums[i]的差最小。如果多个(i,j)符合条件,取最小的。比如:{1,2,3}的(I,j)是{0,1}而不是{1,2}。
空间复杂度:O(nnnk)
dp类似。

动态规划的转移方程

只需要从x 推导x+1,不需要推导x+2,x+3 ⋯ \cdots ,如果硬要的话需要用前缀和(后缀和)。 
{ d p = p r e 不选择 n u m s [ x ] d p [ i ] [ j ] [ x ] [ l e n + 1 ] + = . . . e l s e 且 n u m s [ j ] − n u m s [ i ] < = n u m s [ x ] − n u m s [ e n d ] d p [ e n d ] [ x ] [ x ] [ l e n + 1 ] + = . . . e l s e

{dp=prenums[x]dp[i][j][x][len+1]+=...elsenums[j]nums[i]<=nums[x]nums[end]dp[end][x][x][len+1]+=...else
dp=predp[i][j][x][len+1]+=...dp[end][x][x][len+1]+=...else不选择nums[x]elsenums[j]nums[i]<=nums[x]nums[end]
时间复杂度:O(nnnkn) 估计超时
剪枝:
枚举的时候确保 i < j ,且 j <= x。

动态规划+前缀和

拆分成若干个子问题,假定序列存在(i,j),且此序列的能力为power = nums[j]-nums[i]。

动态规划的状态表示

dp[len][end] 表示 子序列的长度为len,最后一个元素是end。
空间复杂度:O(kn)

利用前缀和优化 动态规划的转移方程

枚举end,end not ∈ \in (i,j) ,否则此序列的能量就不是nums[j]-nums[i]了。
{ o l d E n d ∈ [ 0 , e n d ) 且 n u m s [ e n d ] − n u m s [ o l d E n d ] > p o w e r e n d < = i o e d E n d ∈ ( e n d , n ) 且 n u m s [ e n d ] − n u m s [ o l d E n d ] > = p o w e r e n d > = j

{oldEnd[0,end)nums[end]nums[oldEnd]>powerend<=ioedEnd(end,n)nums[end]nums[oldEnd]>=powerend>=j
{oldEnd[0,end)nums[end]nums[oldEnd]>poweroedEnd(end,n)nums[end]nums[oldEnd]>=powerend<=iend>=j

如果不利用前缀和优先,时间复杂度:O(knn),利用前缀和优化O(kn)。
总时间复杂度:O(knkn)。

动态规划的初始状态

枚举所有长度为2

动态规划的填表顺序

l e n = 3 n _{len=3}^{n} len=3n

动态规划的返回值

len == k 且 end >=j 才是需要统计的子序列数量。

代码

没用前缀和优化

理论上过不了,实际过了。

template<int MOD = 1000000007>
class C1097Int
{
public:
	C1097Int(long long llData = 0) :m_iData(llData% MOD)
	{

	}
	C1097Int  operator+(const C1097Int& o)const
	{
		return C1097Int(((long long)m_iData + o.m_iData) % MOD);
	}
	C1097Int& operator+=(const C1097Int& o)
	{
		m_iData = ((long long)m_iData + o.m_iData) % MOD;
		return *this;
	}
	C1097Int& operator-=(const C1097Int& o)
	{
		m_iData = (m_iData + MOD - o.m_iData) % MOD;
		return *this;
	}
	C1097Int  operator-(const C1097Int& o)
	{
		return C1097Int((m_iData + MOD - o.m_iData) % MOD);
	}
	C1097Int  operator*(const C1097Int& o)const
	{
		return((long long)m_iData * o.m_iData) % MOD;
	}
	C1097Int& operator*=(const C1097Int& o)
	{
		m_iData = ((long long)m_iData * o.m_iData) % MOD;
		return *this;
	}
	bool operator==(const C1097Int& o)const
	{
		return m_iData == o.m_iData;
	}
	bool operator<(const C1097Int& o)const
	{
		return m_iData < o.m_iData;
	}
	C1097Int pow(long long n)const
	{
		C1097Int iRet = 1, iCur = *this;
		while (n)
		{
			if (n & 1)
			{
				iRet *= iCur;
			}
			iCur *= iCur;
			n >>= 1;
		}
		return iRet;
	}
	C1097Int PowNegative1()const
	{
		return pow(MOD - 2);
	}
	int ToInt()const
	{
		return m_iData;
	}
private:
	int m_iData = 0;;
};

class Solution {
public:
	int sumOfPowers(vector<int>& nums, const int K) {
		m_c = nums.size();
		sort(nums.begin(), nums.end());		
		C1097Int<> biRet = 0;
		for (int i = 0; i < m_c; i++) {
			for (int j = i + 1; j < m_c; j++) {
				auto cur = Do(nums, i, j, K);
				biRet += cur;
				//std::cout << " i :" << i << " j:" << j << " " << cur.ToInt() <<  std::endl;
			}
		}
		return biRet.ToInt();
	}
	C1097Int<> Do(const vector<int>& nums,int i,int j, const int K) {
		const int iDiff = nums[j] - nums[i];
		vector<vector<C1097Int<>>> dp(K + 1, vector<C1097Int<>>(m_c));
		for (int end = 0; end <= i; end++) {
			for (int end1 = 0; end1 < end; end1++) {
				if (nums[end] - nums[end1] > iDiff) {
					dp[2][end] += 1;
				}
			}
		}
		dp[2][j] = 1;
	
		for (int len = 3; len <= K; len++) {
			for (int end = 0; end <= i; end++) {
				for (int end1 = 0; end1 < end; end1++) {
					if (nums[end] - nums[end1] > iDiff) {
						dp[len][end] += dp[len - 1][end1];
					}
				}
			}
			dp[len][j] = dp[len - 1][i];
			for (int end = j+1; end < m_c; end++) {
				for (int end1 = j; end1 < end; end1++) {
					if (nums[end] - nums[end1] >= iDiff) {
						dp[len][end] += dp[len - 1][end1];
					}
				}
			}
		}
		return std::accumulate(dp.back().begin() + j, dp.back().end(), C1097Int<>())*iDiff;
	}
	int m_c;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117

测试用例

int main()
{
	vector<int> nums;
	int k;
	
	{
		Solution sln;
		nums = { 6,14,4,13 }, k = 3;
		auto res = sln.sumOfPowers(nums, k);
		Assert(6, res);
	}
	{
		Solution sln;
		nums = { 1,2,3,4 }, k = 3;
		auto res = sln.sumOfPowers(nums, k);
		Assert(4, res);
	}
	{
		Solution sln;
		nums = { 4,3,-1 }, k = 2;
		auto res = sln.sumOfPowers(nums, k);
		Assert(10, res);
	}

	{
		Solution sln;
		nums = { 2,2 }, k = 2;
		auto res = sln.sumOfPowers(nums, k);
		Assert(0, res);
	}
	{
		Solution sln;
		nums = { 2,246006,496910,752786,1013762,1279948,1551454,1828436,2110982,2399316,2693558,2993942,3300640,3613766,3933442,4259696,4592656,4932556,5279494,5633522,5994678,6363102,6739028,7122528,7513792,7913044,8320394,8736004,9160062,9592750,10034184,10484602,10944108,11412852,11891048,12378822,12876346,13383746,13901098,14428528,14966126,15514010,16072380,16641300,17220904,17811360,18412850,19025600,19649778,20285440 }, k = 37;
		auto res = sln.sumOfPowers(nums, k);
		Assert(273504325, res);
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

利用前缀和优化:用时减少不到50%

template<int MOD = 1000000007>
class C1097Int
{
public:
	C1097Int(long long llData = 0) :m_iData(llData% MOD)
	{

	}
	C1097Int  operator+(const C1097Int& o)const
	{
		return C1097Int(((long long)m_iData + o.m_iData) % MOD);
	}
	C1097Int& operator+=(const C1097Int& o)
	{
		m_iData = ((long long)m_iData + o.m_iData) % MOD;
		return *this;
	}
	C1097Int& operator-=(const C1097Int& o)
	{
		m_iData = (m_iData + MOD - o.m_iData) % MOD;
		return *this;
	}
	C1097Int  operator-(const C1097Int& o)
	{
		return C1097Int((m_iData + MOD - o.m_iData) % MOD);
	}
	C1097Int  operator*(const C1097Int& o)const
	{
		return((long long)m_iData * o.m_iData) % MOD;
	}
	C1097Int& operator*=(const C1097Int& o)
	{
		m_iData = ((long long)m_iData * o.m_iData) % MOD;
		return *this;
	}
	bool operator==(const C1097Int& o)const
	{
		return m_iData == o.m_iData;
	}
	bool operator<(const C1097Int& o)const
	{
		return m_iData < o.m_iData;
	}
	C1097Int pow(long long n)const
	{
		C1097Int iRet = 1, iCur = *this;
		while (n)
		{
			if (n & 1)
			{
				iRet *= iCur;
			}
			iCur *= iCur;
			n >>= 1;
		}
		return iRet;
	}
	C1097Int PowNegative1()const
	{
		return pow(MOD - 2);
	}
	int ToInt()const
	{
		return m_iData;
	}
private:
	int m_iData = 0;;
};

class Solution {
public:
	int sumOfPowers(vector<int>& nums, const int K) {
		m_c = nums.size();
		sort(nums.begin(), nums.end());
		C1097Int<> biRet = 0;
		for (int i = 0; i < m_c; i++) {
			for (int j = i + 1; j < m_c; j++) {
				auto cur = Do(nums, i, j, K);
				biRet += cur;
				//std::cout << " i :" << i << " j:" << j << " " << cur.ToInt() <<  std::endl;
			}
		}
		return biRet.ToInt();
	}
	C1097Int<> Do(const vector<int>& nums, int i, int j, const int K) {
		const int iDiff = nums[j] - nums[i];
		vector<vector<C1097Int<>>> dp(K + 1, vector<C1097Int<>>(m_c));
		for (int end = 0; end <= i; end++) {
			for (int end1 = 0; end1 < end; end1++) {
				if (nums[end] - nums[end1] > iDiff) {
					dp[2][end] += 1;
				}
			}
		}
		dp[2][j] = 1;

		for (int len = 3; len <= K; len++) {
			int end1 = 0;
			C1097Int<> biRet = 0;
			for (int end = 0; end <= i; end++) {
				while ((end1 < end) && (nums[end] - nums[end1] > iDiff)) {
					biRet += dp[len - 1][end1];
					end1++;
				}
				dp[len ][end] = biRet;
			}
			dp[len][j] = dp[len - 1][i];
			C1097Int<> biRet2 = 0;
			for (int end = j + 1,end1=j ; end < m_c; end++) {
				while ((end1 < end) && (nums[end] - nums[end1] >= iDiff)) {
					biRet2 += dp[len - 1][end1];
					end1++;
				}
				dp[len][end] = biRet2;
			}
		}
		return std::accumulate(dp.back().begin() + j, dp.back().end(), C1097Int<>()) * iDiff;
	}
	int m_c;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/481406
推荐阅读
相关标签
  

闽ICP备14008679号