赞
踩
与RNN一样,输入也是三个维度,由于之前RNN先使用了CNN进行过滤,这次LSTM模型不使用CNN过滤,直接把所有向量放入训练。如下图,没有和RNN一样使用三层卷积层。
定义超参数
BATCH_SIZE = 32 # 每批处理的数据
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
EPOCHS = 15 # 训练数据集的轮次
1. 最后一个epoch(第15个epoch)时候的训练集的损失率
2.最后一个epoch时候的训练准确率
3. 总共15个epoch,每次epoch之后都测试一次,得到15次的loss
4. 每次训练完epoch之后在测试集的准确度
LSTM模型准确度方面表现正常,但是loss太过抖动,需要调参数。比如学习率,loss函数,batch_size,激活函数,优化算法等。
- #!/usr/bin/env python
- # -#-coding:utf-8 -*-
- # author: vv
- # datetime:2021/10/17 21:35:59
- # software:PyCharm
-
-
- """
- 模型1:Pytorch LSTM 实现流程
- 1.图片数据处理,加载数据集
- 2.使得数据集可迭代(每次读取一个Batch)
- 3.创建模型类
- 4.初始化模型类
- 5.初始化损失类
- 6.训练模型
- """
-
- # 1.加载库
- import os
- import numpy as np
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.optim as optim
- import torchvision
- from torch.utils.data import DataLoader
- from torchvision import datasets, transforms
- import matplotlib.pyplot as plt
-
- # 2.定义超参数
- BATCH_SIZE = 32 # 每批处理的数据
- DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 放在cuda或者cpu上训练
- EPOCHS = 15 # 训练数据集的轮次
-
- # 3.构建pipeline,对图像做处理
- pipeline = transforms.Compose([
- # 彩色图像转灰度图像num_output_channels默认1
- # transforms.Grayscale(num_output_channels=1),
- # 分辨率重置为256
- transforms.Resize(256),
- # 对加载的图像作归一化处理, 并裁剪为[224x224x3]大小的图像(因为这图片像素不一致直接统一)
- transforms.CenterCrop(224),
- # 将图片转成tensor
- transforms.ToTensor(),
- # 正则化,模型出现过拟合现象时,降低模型复杂度
- transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
- ])
-
- # 图片路径(训练图片和测试图片的)
- base_dir_train = 'data/train'
- base_dir_test = 'data/val'
- # 打印一下训练图片猫狗各多少张图片
- print('train dogs total images : %d' % (len(os.listdir(base_dir_train + '\\dog'))))
- print('train cats total images : %d' % (len(os.listdir(base_dir_train + '\\cat'))))
- print('test cats total images : %d' % (len(os.listdir(base_dir_test + '\\cat'))))
- print('test dogs total images : %d' % (len(os.listdir(base_dir_test + '\\dog'))))
-
- # 4. 加载数据集
- """
- 训练集,猫是0,狗是1,ImageFolder方法自己分类的,关于ImageFolder详见:
- https://blog.csdn.net/weixin_42147780/article/details/102683053?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-2.no_search_link&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-2.no_search_link
- """
- train_dataset = datasets.ImageFolder(root=base_dir_train, transform=pipeline)
- print("train_dataset=" + repr(train_dataset[1][0].size()))
- print("train_dataset.class_to_idx=" + repr(train_dataset.class_to_idx))
-
- # 创建训练集的可迭代对象,一个batch_size地读取数据,shuffle设为True表示随机打乱顺序读取
- train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
-
- # 测试集
- test_dataset = datasets.ImageFolder(root=base_dir_test, transform=pipeline)
- # print(test_dataset)
- print("test_dataset=" + repr(test_dataset[1][0].size()))
- print("test_dataset.class_to_idx=" + repr(test_dataset.class_to_idx))
- # 创建测试集的可迭代对象,一个batch_size地读取数据
- test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True)
-
- # 获得一批测试集的数据
- images, labels = next(iter(test_loader))
- print("images shape", images.shape)
- print("labels shape", labels.shape)
-
-
- # 5.定义函数,显示一批图片
- def imShow(inp, title=None):
- # tensor转成numpy,transpose转成(通道数,长,宽)
- inp = inp.numpy().transpose((1, 2, 0))
- mean = np.array([0.485, 0.456, 0.406]) # 均值
- std = np.array([0.229, 0.224, 0.225]) # 标准差
- inp = std * inp + mean
- inp = np.clip(inp, 0, 1) # 像素值限制在0-1之间
- plt.imshow(inp)
- if title is not None:
- plt.title(title)
- plt.pause(0.001)
-
-
- # 网格显示
- out = torchvision.utils.make_grid(images)
- imShow(out)
-
-
- # 6.定义LSTM网络
- class LSTM_Model(nn.Module):
- def __init__(self, input_dim, hidden_dim, layer_dim, output_dim):
- super(LSTM_Model, self).__init__() # 初始化父类构造方法
- self.hidden_dim = hidden_dim
- self.layer_dim = layer_dim
- # 构建LSTM模型
- self.lstm = nn.LSTM(input_dim, hidden_dim, layer_dim, batch_first=True)
- # 全连接层
- self.fc = nn.Linear(hidden_dim, output_dim)
-
- def forward(self, x):
- # 初始化隐藏层状态全为0
- # (layer_dim,batch_size,hidden_dim)
- h0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_().to(DEVICE)
- # 初始化cell state
- c0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_().to(DEVICE)
- x = x.view(x.size(0), 1, -1)
- # 分离隐藏状态 避免梯度爆炸
- '''
- RNN只有一个状态,而LSTM有两个状态,所以两个状态都要分离
- '''
- out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))
- # 只需要最后一层隐层的状态
- out = self.fc(out[:, -1, :])
- return out
-
-
- # 7.初始化模型
- input_dim = 150528 # 输入维度(输入的节点数量)
- hidden_dim = 50 # 隐藏层的维度(每个隐藏层的节点数)
- layer_dim = 2 # 2层LSTM(隐藏层的数量 2层)
- out_dim = 2 # 输出维度
- rnn_model = LSTM_Model(input_dim, hidden_dim, layer_dim, out_dim)
-
- # 8.输出模型参数信息
- length = len(list(rnn_model.parameters()))
- print(length)
-
- # 9.输出模型参数信息
- length = len(list(rnn_model.parameters()))
- print(length)
-
- # 优化器
- # optimizer = optim.SGD(rnn_model.parameters(), lr=1e-3, momentum=0.9)
- optimizer = optim.Adam(rnn_model.parameters(), lr=1e-3, betas=(0.9, 0.99))
-
- # 损失函数,交叉熵损失函数
- criterion = nn.CrossEntropyLoss()
-
- # 把损失,准确度,迭代都记录出list,然后讲loss和准确度画出图像
- sequence_dim = 53
- train_loss_list = []
- train_accuracy_list = []
- train_iteration_list = []
-
- test_loss_list = []
- test_accuracy_list = []
- test_iteration_list = []
-
- iteration = 0
- # for i, (imgs, labels) in enumerate(test_loader):
- # # print("imgs=" + repr(imgs))
- # print("labels=" + repr(labels))
- # print("i=" + repr(i))
-
-
- # 训练
- # """
- for epoch in range(EPOCHS):
- # 用来显示训练的loss correct等
- train_correct = 0.0
- train_total = 0.0
- for i, (imgs, labels) in enumerate(train_loader):
- # 声明训练,loss等只能在train mode下进行运算
- rnn_model.train()
- # 把训练的数据集合都扔到对应的设备去
- # imgs = imgs.view(-1,1,sequence_dim, input_dim).requires_grad_().to(DEVICE)
- # print("imgs shape", imgs.shape)
- # print("imgs = ", imgs.data)
- imgs = imgs.to(DEVICE)
- labels = labels.to(DEVICE)
- # 防止梯度爆炸,梯度清零
- optimizer.zero_grad()
- # 前向传播
- rnn_model = rnn_model.cuda() # 这里要从cuda()中取得,不然前面都放在cuda后面放在cpu,会报错,报“不在同一个设备的错误" Input and parameter tensors are not at the same device, found input tensor at cuda:0 and parameter tensor at cpu
- output = rnn_model(imgs)
- # print("RNN output shape", out.shape)
- # print("label shape", labels.shape)
- # 计算损失
- loss = criterion(output, labels)
- # 反向传播
- loss.backward()
- # 更新参数
- optimizer.step()
- # 计算训练时候的准确度
- train_predict = torch.max(output.data, 1)[1]
- if torch.cuda.is_available():
- train_correct += (train_predict.cuda() == labels.cuda()).sum()
- else:
- train_correct += (train_predict == labels).sum()
- train_total += labels.size(0)
- accuracy = train_correct / train_total * 100.0
- # 只画出最后一次epoch的
- if (epoch + 1) == EPOCHS:
- # 迭代计数器++
- iteration += 1
- train_accuracy_list.append(accuracy)
- train_iteration_list.append(iteration)
- train_loss_list.append(loss)
- # 打印信息
- print("Epoch :%d , Batch : %5d , Loss : %.8f,train_correct:%d,train_total:%d,accuracy:%.6f" % (
- epoch + 1, i + 1, loss.item(), train_correct, train_total, accuracy))
- print("==========================预测开始===========================")
- rnn_model.eval()
- # 验证accuracy
- correct = 0.0
- total = 0.0
- # 迭代测试集 获取数据 预测
- for j, (datas, targets) in enumerate(test_loader):
- datas = datas.to(DEVICE)
- targets = targets.to(DEVICE)
- # datas = datas.view(-1, sequence_dim, input_dim).requires_grad_().to(DEVICE)
- # datas = datas.reshape(datas.size(0), 1, -1)
- # 模型预测
- outputs = rnn_model(datas)
- # 防止梯度爆炸,梯度清零
- optimizer.zero_grad()
- # 获取测试概率最大值的下标
- predicted = torch.max(outputs.data, 1)[1]
- # 统计计算测试集合
- total += targets.size(0)
- if torch.cuda.is_available():
- # print(predicted.cuda() == targets.cuda())
- correct += (predicted.cuda() == targets.cuda()).sum()
- # print("predicted.cuda()=" + repr(predicted.cuda()))
- # print("labels.cuda()=" + repr(targets.cuda()))
- else:
- correct += (predicted == targets).sum()
- accuracy = correct / total * 100.0
- test_accuracy_list.append(accuracy)
- test_loss_list.append(loss.item())
- test_iteration_list.append(iteration)
- print("TEST--->loop : {}, Loss : {}, correct:{}, total:{}, Accuracy : {}".format(iteration, loss.item(),
- correct,
- total, accuracy))
- # 可视化训练集loss
- plt.figure(1)
- plt.plot(train_iteration_list, train_loss_list)
- plt.xlabel("number of iteration")
- plt.ylabel("loss")
- plt.title("RNN train loss")
- plt.show()
-
- # 可视化训练集accuracy
- plt.figure(2)
- plt.plot(train_iteration_list, train_accuracy_list)
- plt.xlabel('number of iteration')
- plt.ylabel('accuracy')
- plt.title('LSTM train accuracy')
- plt.show()
-
- # 可视化测试集loss
- plt.figure(3)
- plt.plot(test_iteration_list, test_loss_list)
- plt.xlabel('number of iteration')
- plt.ylabel('loss')
- plt.title('LSTM test loss')
- plt.show()
-
- # 可视化测试集accuracy
- plt.figure(4)
- plt.plot(test_iteration_list, test_accuracy_list)
- plt.xlabel('number of iteration')
- plt.ylabel('accuracy')
- plt.title('LSTM test accuracy')
- plt.show()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。