赞
踩
Bidirectional LSTM,由两个LSTMs上下叠加在 一起组成。输出由这两个LSTMs的隐藏层的状态决定。
- def bilstm(self,x):
-
- # 输入的数据格式转换
- # x.shape [batch_size, time_steps, input_size]
- x=tf.transpose(x,[1,0,2])
- fw_x = tf.reshape(x, [-1, self.n_input_text]) # step*batch, feature
- fw_x = tf.split(0, self.n_step_text, fw_x)
-
-
- with tf.variable_scope('bilstm_lt'):
-
- #定义Cell,单层LSTM
- lstm_fw_cell = rnn_cell.BasicLSTMCell(self.n_hidden_text, forget_bias=1.0, state_is_tuple=True)#前向的lstm cell
- lstm_bw_cell = rnn_cell.BasicLSTMCell(self.n_hidden_text, forget_bias=1.0, state_is_tuple=True)#反向的rnn cell
-
- #dropout
- lstm_fw_cell = rnn_cell.DropoutWrapper(cell=lstm_fw_cell, input_keep_prob=1.0, output_keep_prob=keep_prob)
- lstm_bw_cell = rnn_cell.DropoutWrapper(cell=lstm_bw_cell, input_keep_prob=1.0, output_keep_prob=keep_prob)
-
- #构建双向的RNN网络
- with tf.variable_scope('fw_lt'):
- (output_fw, state_fw) = rnn.rnn(lstm_fw_cell,fw_x,dtype=tf.float32)
- t=tf.convert_to_tensor(output_fw)
- print (t.get_shape().as_list())
- with tf.variable_scope('bw_lt'):
- bw_x = tf.reverse(x, [True,False,False])# reverse time dim
- bw_x = tf.reshape(bw_x, [-1, self.n_input_text]) # step*batch, feature
- bw_x = tf.split(0, self.n_step_text, bw_x)
- (output_bw, state_bw) = rnn.rnn(lstm_bw_cell,bw_x,dtype=tf.float32)
-
- # output_bw.shape = [timestep_size, batch_size, hidden_size]
- output_bw = tf.reverse(output_bw, [True,False,False])
- output = tf.concat(2,[output_fw, output_bw])#在第2个维度上,将output_fw, output_bw拼接
- return output#返回值:(outputs, output_states:最后一层隐藏层)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。