当前位置:   article > 正文

safetensors格式文件打开和读取<未解决>_safetensors文件怎么打开

safetensors文件怎么打开

转 https://blog.csdn.net/wzk4869/article/details/130668642
显卡:GTX 3060

safetensors

safetensors 是一种用于安全存储张量(与 pickle 相反)的新型简单格式,并且仍然很快(零拷贝)。

1.1 pip 安装

pip install safetensors
conda install -c huggingface safetensors
  • 1
  • 2

1.2 加载张量

from safetensors import safe_open

tensors = {}
with safe_open("model.safetensors", framework="pt", device=0) as f:
    for k in f.keys():
        tensors[k] = f.get_tensor(k)


# 仅加载部分张量(在多个GPU上运行时很有趣)
from safetensors import safe_open

tensors = {}
with safe_open("model.safetensors", framework="pt", device=0) as f:
    tensor_slice = f.get_slice("embedding")
    vocab_size, hidden_dim = tensor_slice.get_shape()
    tensor = tensor_slice[:, :hidden_dim]

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

1.3 保存张量

import torch
from safetensors.torch import save_file

tensors = {
    "embedding": torch.zeros((2, 2)),
    "attention": torch.zeros((2, 3))
}
save_file(tensors, "model.safetensors")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

1.4 速度比较
safetensors 真的很快。让我们通过加载 gpt2 权重将其进行比较。要运行 GPU 基准测试,请确保您的机器具有 GPU,或者您已选择是否使用的是 Google Colab。

在开始之前,请确保已安装所有必要的库:

pip install safetensors huggingface_hub torch
  • 1

让我们从导入所有将使用的包开始:

import os
import datetime
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import torch

# Download safetensors & torch weights for gpt2
sf_filename = hf_hub_download("gpt2", filename="model.safetensors")
pt_filename = hf_hub_download("gpt2", filename="pytorch_model.bin")

# CPU 基准测试
start_st = datetime.datetime.now()
weights = load_file(sf_filename, device="cpu")
load_time_st = datetime.datetime.now() - start_st
print(f"Loaded safetensors {load_time_st}")
# 输出结果为:Loaded safetensors 0:00:00.026842

start_pt = datetime.datetime.now()
weights = torch.load(pt_filename, map_location="cpu")
load_time_pt = datetime.datetime.now() - start_pt
print(f"Loaded pytorch {load_time_pt}")
# 输出结果为:Loaded pytorch 0:00:00.182266

print(f"on CPU, safetensors is faster than pytorch by: {load_time_pt/load_time_st:.1f} X")
# 输出结果为:on CPU, safetensors is faster than pytorch by: 6.8 X
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

这种加速是由于该库通过直接映射文件来避免不必要的副本。实际上可以在 torch 上完成。

# GPU 基准测试
os.environ["SAFETENSORS_FAST_GPU"] = "1"
torch.zeros((2, 2)).cuda()

start_st = datetime.datetime.now()
weights = load_file(sf_filename, device="cuda:0")
load_time_st = datetime.datetime.now() - start_st
print(f"Loaded safetensors {load_time_st}")

start_pt = datetime.datetime.now()
weights = torch.load(pt_filename, map_location="cuda:0")
load_time_pt = datetime.datetime.now() - start_pt
print(f"Loaded pytorch {load_time_pt}")
print(f"on GPU, safetensors is faster than pytorch by: {load_time_pt/load_time_st:.1f} X")
# 输出结果为:
# Loaded safetensors 0:00:00.497415
# Loaded pytorch 0:00:00.250602
# on GPU, safetensors is faster than pytorch by: 0.5 X
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

加速有效是因为此库能够跳过不必要的 CPU 分配。不幸的是,据我们所知,它无法在纯 pytorch 中复制。该库的工作原理是内存映射文件,使用 pytorch 创建空张量,并直接调用以直接在 GPU 上移动张量。

==========================================================
实际操作中,不知道为什么上面的代码是跑不通的
打开safetensors格式文件要换safetensors库的safe_open

from safetensors import safe_open

tensors1 = {}
with safe_open(filex, framework="pt", device="cuda:0") as f:
    for k in f.keys():
        tensors1[k] = f.get_tensor(k)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

safe_open下面也没有modules属性
safetensors库运行时发现modules()函数不存在
torch.nn.Module的children()函数也不存在,named_children()也不存在
pytorch版本 pytorch-2.1.0-py3.9_cpu_0

具体统计卷积层数量,池化层数量,全连接层数量的代码(会报错)

import torch
import torch.nn as nn

# 加载模型
filex = 'D:/Program Files/sdxl-webui-1.0/sdxl-webui-1.0/models/Stable-diffusion/sd_xl_base_1.0.safetensors'
filexs = 'C:/Users/admin/Desktop/model.pth'

# torch.save(filex.state_dict(), filexs)
# model.load_state_dict(torch.load(filexs))
# model = torch.load('model.pth')

# 统计各层数量
conv_count = 0
pool_count = 0
fc_count = 0

# 遍历模型各层
for layer in model.modules():
    if isinstance(layer, nn.Conv2d):
        conv_count += 1
    elif isinstance(layer, nn.MaxPool2d):
        pool_count += 1
    elif isinstance(layer, nn.Linear):
        fc_count += 1

# 输出各层数量
print("卷积层数量:", conv_count)
print("池化层数量:", pool_count)
print("全连接层数量:", fc_count)
# ===================================================


import torch.nn as nn
from safetensors import safe_open

# 加载模型
filex = 'D:/Program Files/sdxl-webui-1.0/sdxl-webui-1.0/models/Stable-diffusion/sd_xl_base_1.0.safetensors'
filexs = 'C:/Users/admin/Desktop/model2.safetensors'
model = safe_open(filex, framework="pt", device="cuda:0")  # 加载模型的完整路径

def get_modules(module):
    modules = [module]
    for name, child in module.nn.named_children():
        modules += get_modules(child)
    return modules

# 统计各层数量  
conv_count = 0
pool_count = 0
fc_count = 0

modules = get_modules(model)

for module in modules:
    if isinstance(module, nn.Conv2d):
        conv_count += 1
    elif isinstance(module, nn.MaxPool2d):
        pool_count += 1
    elif isinstance(module, nn.Linear):
        fc_count += 1

# 输出各层数量
print("卷积层数量:", conv_count)
print("池化层数量:", pool_count)
print("全连接层数量:", fc_count)


# ===================================================

import torch.nn as nn
from safetensors import safe_open

# 加载模型
filex = 'D:/Program Files/sdxl-webui-1.0/sdxl-webui-1.0/models/Stable-diffusion/sd_xl_base_1.0.safetensors'
filexs = 'C:/Users/admin/Desktop/model2.safetensors'
model = safe_open(filex, framework="pt", device="cuda:0")  # 加载模型的完整路径

# 保存模型的状态字典  
# torch.save(model.state_dict(), filexs)

# 重新加载模型的状态字典  
# model_state_dict = torch.load(filexs)

def get_modules(module):
    modules = [module]
    for name, child in module.nn.named_children():
        modules += get_modules(child)
    return modules

# 统计各层数量  
conv_count = 0
pool_count = 0
fc_count = 0

modules = get_modules(model)

for module in modules:
    if isinstance(module, nn.Conv2d):
        conv_count += 1
    elif isinstance(module, nn.MaxPool2d):
        pool_count += 1
    elif isinstance(module, nn.Linear):
        fc_count += 1

# 输出各层数量
print("卷积层数量:", conv_count)
print("池化层数量:", pool_count)
print("全连接层数量:", fc_count)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109

暂时还没找到原因

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/489326
推荐阅读
相关标签
  

闽ICP备14008679号